[1] 齐庆新,陈尚本,王怀新,等.冲击地压、岩爆、矿震的关系及其数值模拟研究[J].岩石力学与工程学报,2003,22(11):1852-1858.
QI Qingxin, CHEN Shangben, WANG Huaixin, et al. Study on the relations among coal bump, rockburst and mining tremor with numerical simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1852-1858.
[2] 齐庆新,李一哲,赵善坤,等.我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J].煤炭科学技术,2019,47(9):1-40.
QI Qingxin, LI Yizhe, ZHAO Shankun, et al. Seventy years development of coal mine rockburst in China: establishment and consideration of theory and technology system[J]. Coal Science and Technology, 2019, 47(9): 1-40.
[3] 袁亮.煤矿典型动力灾害风险判识及监控预警技术“十三五”研究进展[J].矿业科学学报,2021,6(1):1-8.
YUAN Liang. Risk identification, monitoring and early warning of typical coal mine dynamic disasters during the 13th Five-Year Plan period[J]. Journal of Mining Science and Technology, 2021, 6(1): 1-8.
[4] 窦林名,田鑫元,曹安业,等.我国煤矿冲击地压防治现状与难题[J].煤炭学报,2022,47(1):152-171.
DOU Linming, TIAN Xinyuan, CAO Anye, et al. Present situation and problems of coal mine rock burst prevention and control in China[J]. Journal of China Coal Society, 2022, 47(1): 152-171.
[5] 潘一山,赵扬锋,官福海,等.矿震监测定位系统的研究及应用[J].岩石力学与工程学报,2007,26(5):1002-1011.
PAN Yishan, ZHAO Yangfeng, GUAN Fuhai, et al. Study on rockburst monitoring and orientation system and its application[J]. Chinese Journal of Rock Mechanics and Engineering,2007, 26(5): 1002-1011.
[6] 贺虎,窦林名,巩思园,等.冲击矿压的声发射监测技术研究[J].岩土力学,2011,32(4):1262-1268.
HE Hu, DOU Linming, GONG Siyuan, et al. Study of acoustic emission monitoring technology of rockburst[J]. Rock and Soil Mechanics, 2011, 32(4): 1262-1268.
[7] 蔡武,窦林名,李振雷,等.微震多维信息识别与冲击矿压时空预测—以河南义马跃进煤矿为例[J].地球物理学报,2014,57(8):2687-2700.
CAI Wu, DOU Linming, LI Zhenlei, et al. Microseismic multidimensional information identification and spatio-temporal forecasting of rock bust: A case study of Yima Yuejin coal mine, Henan, China[J]. Chinese Journal of Geophysics, 2014, 57(8): 2687-2700.
[8] 窦林名,巩思园,刘鹏,等.矿震冲击灾害远程在线预警平台[J].煤炭科学技术,2015,43(6):48-53.
DOU Linming, GONG Siyuan, LIU Peng, et al. Remote online early warning platform of mine seismic and bump disaster[J]. Coal Science and Technology, 2015, 43(6): 48-53.
[9] 袁亮,姜耀东,何学秋,等.煤矿典型动力灾害风险精准判识及监控预警关键技术研究进展[J].煤炭学报,2018,43(2):306-318.
YUAN Liang, JIANG Yaodong, HE Xueqiu, et al. Research progress of precise risk accurate identification and monitoring early warning on typical dynamic disasters in coal mine[J]. Journal of China Coal Society, 2018, 43(2): 306-318.
[10] 姜福兴,曲效成,王颜亮,等.基于云计算的煤矿冲击地压监控预警技术研究[J].煤炭科学技术,2018,46(1):199-206.
JIANG Fuxing, QU Xiaocheng, WANG Yanliang, et al. Study on monitoring & control and early warning technology of mine pressure bump based on cloud computing[J]. Coal Science and Technology, 2018, 46(1): 199-206.
[11] 王健达,秦凯,邓志刚,等.基于光纤光栅采动应力测试的冲击地压预警技术研究[J].煤炭科学技术,2019,47(6):126-132.
WANG Jianda, QIN Kai, DENG Zhigang, et al. Study on early warning technology of rock burst based on mining stress monitoring by fiber-grating[J]. Coal Science and Technology, 2019, 47(6): 126-132.
[12] 姜福兴,杨淑华,成云海,等.煤矿冲击地压的微地震监测研究[J].地球物理学报,2006,49(5):1511-1516.
JIANG Fuxing, YANG Shuhua, CHENG Yunhai, et al. A study on microseismic monitoring of rock burst in coal mine[J]. Chinese Journal of Geophysics, 2006, 49(5): 1511-1516.
[13] 陶慧.基于监测时间序列的冲击地压混沌特性分析及其智能预测研究[D].徐州:中国矿业大学,2014.
[14] 曹安业,刘耀琪,杨旭,等.物理指标与数据特征融合驱动的冲击地压时序预测方法[J/OL].煤炭学报:1-16[2023-06-05].DOI:10.13225/j.cnki.jccs.2022. 0680.
CAO Anye, LIU Yaoqi, YANG Xu, et al. Physical index and data fusion-driven method for coal burst prediction in time sequence[J/OL]. Journal of China Coal Society, 2022, 1-16[2023-06-05]. DOI:10.13225/j.cnki.jccs.2022.0680.
[15] 窦林名,王盛川,巩思园,等.冲击矿压风险智能判识与监测预警云平台[J].煤炭学报,2020,45(6):2248-2255.
DOU Linming, WANG Shengchuan, GONG Siyuan, et al. Cloud platform of rock-burst intelligent risk assessment and multi-parameter monitoring and early warning[J]. Journal of China Coal Society, 2020, 45(6): 2248-2255.
[16] YIN X, LIU Q, HUANG X, et al. Real-time prediction of rockburst intensity using an integrated CNN-Adam-BO algorithm based on microseismic data and its engineering application[J]. Tunnelling and Underground Space Technology, 2021, 117: 1-21.
[17] YIN X, LIU Q, PAN Y, et al. Strength of stacking technique of ensemble learning in rockburst prediction with imbalanced data: comparison of eight single and ensemble models[J]. Natural Resources Research, 2021, 30(2): 1795-1815.
[18] 夏永学,康立军,齐庆新,等.基于微震监测的5个指标及其在冲击地压预测中的应用[J].煤炭学报,2010,35(12):2011-2016.
XIA Yongxue, KANG Lijun, QI Qingxin, et al. Five indexes of microseismic and their application in rock burst forecastion[J]. Journal of China Coal Society, 2010, 35(12): 2011-2016.
[19] 袁瑞甫,李化敏,李怀珍.煤柱型冲击地压微震信号分布特征及前兆信息判别[J].岩石力学与工程学报,2012,31(1):80-85.
YUAN Ruifu,LI Huamin,LI Huaizhen. Distribution of microseismic signal and discrimination of portentous information of pillar type rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(1): 80-85.
[20] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[21] CHO K, MERRIENBOER B V, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]// Conference on empirical methods in natural language processing, vol. 3: Conference on empirical methods in natural language processing (EMNLP 2014), 2014.
[22] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
[23] HE H, BAI Y, GARCIA E A, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning[C]//2008 IEEE International Joint Conference on Neural Networks(IEEE world congress on computational intelligence). IEEE, 2008: 1322-1328.
[24] HAN H, WANG W Y, MAO B H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning[C]//International Conference on Intelligent Computing. Springer, Berlin, Heidelberg, 2005: 878-887.
[25] LECUN Y, BOSER B, DENKER J, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 2014, 1(4): 541-551.
[26] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning. PMLR, 2015: 448-456.
[27] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[28] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings. 2011: 315-323.
[29] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[30] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[31] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 4700-4708.
|