• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
LI Hongliang, HUA Xinzhu, ZHANG Zhonghao. Distribution Prediction of Advanced Abutment Pressure of Based on BP Neural Network Model[J]. Safety in Coal Mines, 2015, 46(2): 209-212.
Citation: LI Hongliang, HUA Xinzhu, ZHANG Zhonghao. Distribution Prediction of Advanced Abutment Pressure of Based on BP Neural Network Model[J]. Safety in Coal Mines, 2015, 46(2): 209-212.

Distribution Prediction of Advanced Abutment Pressure of Based on BP Neural Network Model

More Information
  • Published Date: February 19, 2015
  • Based on the analysis of the distribution laws of abutment pressure at the working face, we predict the law of abutment pressure using artificial network technology. We selected seven influence factors of abutment pressure including mining depth, mining height, coal seam inclination angle, workface inclined length, coal body strength, strata stability, and structure of overlying strata. The law of abutment pressure forecast model was established based on artificial neural network. Result shows that actual measurement results and predictive values of the model have goodness of fit, and the error is in the acceptable range.
  • [1]
    朱守颂,姜光.工作面超前支承压力分布规律研究[J].煤炭工程,2011(3):97-98,101.
    [2]
    鲁岩,樊胜强,邹喜正.工作面超前支承压力分布规律[J].辽宁工程技术大学学报:自然科学版, 2008(2):184 -187.
    [3]
    谢福星,张召千,崔凯.大采高采场超前支承压力分布规律及应力峰值位置研究[J].煤矿开采,2013(1):80- 83.
    [4]
    薛诚,赵建峰,王港胜.东曲煤矿工作面超前支承压力分布规律研究[J].煤炭科学技术,2011(6):9-11.
    [5]
    王同旭,刘传孝,王小平.孤岛煤柱侧向支承压力分布的数值模拟与雷达探测研究[J].岩石力学与工程学报, 2002(S2):2484-2487.
    [6]
    钱鸣高,石平五,许家林.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010.
    [7]
    司荣军,王春秋,谭云亮.采场支承压力分布规律的数值模拟研究[J].岩土力学,2007(2):351-354.
    [8]
    姜福兴,王同旭,潘立友,等.矿山压力与岩层控制[M].北京:煤炭工业出版社,2004.
    [9]
    闻新,周露,李翔,等.Matlab神经网络仿真与应用[M].北京:科学出版社,2003.

Catalog

    Article views (325) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return