• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
WU Chao-yang, LI Ning. Application of AGO-BP Neural Network to the Tangent Calculation Method of the Main Influencing Angle[J]. Safety in Coal Mines, 2012, 43(3): 117-120.
Citation: WU Chao-yang, LI Ning. Application of AGO-BP Neural Network to the Tangent Calculation Method of the Main Influencing Angle[J]. Safety in Coal Mines, 2012, 43(3): 117-120.

Application of AGO-BP Neural Network to the Tangent Calculation Method of the Main Influencing Angle

More Information
  • Published Date: March 09, 2012
  • The tangent of the main influencing angle tanβ is one of the most important parameter for mining subsidence prediction with the probability integral method and it determines the range of surface subsidence.Based on analyzing the geologic and mining factors which affect the tangent of the main influencing angle,the paper constructed an AGO-BP neutral network model.This model preprocessed the selected original data on the basis of grey theory,and then calculated the tangent of the main influencing angle with BP neural network mode1.The AGO-BP neural network model not only can adjust the network parameters automatically,but also can avoid the instability problem compared with only using BP neural network model.The tangent of the main influencing angle prediction is more accuracy with the AGO-BP neural network model.
  • [1]
    郭文兵,邓喀中,邹友峰.概率积分法预计参数选取的神经网络模型[J].中国矿业大学学报,2004,33(3):322-326.
    [2]
    高彦涛,谭志祥,邓喀中.基于神经网络的主要影响角正切值求取方法[J].煤矿安全,2007(4):30-33.
    [3]
    魏好,邓喀中,卢正,等.基于支持向量机的主要影响角正切求取方法研究[J].金属矿山,2010(5):120-123.
    [4]
    张安兵,高井祥,时翠梅,等.AGO-BP神经网络预测建模及工程应用研究[J].河北工程大学学报:自然科学版,2007,24(3):72-75.
    [5]
    张安兵,高井祥,张兆江.数据预处理条件下的神经网络开采沉陷预计模型研究[J].测绘科学,2008,33(4):47-49.
    [6]
    国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M].北京:煤炭工业出版社,2000.
    [7]
    刘思峰,郭天榜,党耀国.灰色系统理论及其应用[M].武汉:科学出版社,1999.
    [8]
    伍春香,刘琳,王葆元.三层BP网隐层节点数确定方法的研究[J].武汉测绘科技大学学报,1998,24(2):177-179.
    [9]
    飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005.
  • Related Articles

    [1]LEI Hongyan. Experimental study on influencing factors of initial gas emission velocity based on multiple linear regression[J]. Safety in Coal Mines, 2022, 53(2): 9-15.
    [2]GUO Pengshuai, GAO Jianning, ZHANG Chunpu, CHEN Xu. Research Progress and Analysis on Influence Factors of Initial Velocity of Gas Emission[J]. Safety in Coal Mines, 2020, 51(7): 176-182.
    [3]JIANG Chenglin, ZHANG Qiang, TANG Jun, SHEN Peng. Experimental Study on Influence of Multi-factor on Expansion Energy of Initial Released Gas[J]. Safety in Coal Mines, 2016, 47(4): 20-22.
    [4]XU Lehua, JIANG Chenglin. Experimental Study on Influence of Particle Diameter on Initial Expansion Energy of Released Gas[J]. Safety in Coal Mines, 2015, 46(4): 20-22,26.
    [5]JIANG Haina, CHENG Yuanping, WANG Liang. Effect of Coal Rank on Gas Diffusion Initial Velocity and Hardiness Coefficient[J]. Safety in Coal Mines, 2014, 45(12): 11-13,17.
    [6]WU Xing-qiang, JIANG Cheng-lin. Study on the Expansion Energy Indexes of Initial Releasing Gas Based on the Stepwise Regression Analysis[J]. Safety in Coal Mines, 2013, 44(7): 10-13.
    [7]PAN Hong-yu, LI Shu-gang, LI Zhi-liang, LIN Hai-fei, ZHAO Peng-xiang, CHENG Lian-hua. Experimental Study on the Influence Factors of Initial Speed of Methane Diffusion[J]. Safety in Coal Mines, 2013, 44(6): 15-17,21.
    [8]LI Yi-bo, ZHENG Wan-cheng, WANG Feng-shuang. The Effect of Coal Sample Particle Size on Coal Adsorption Constants and Initial Speed of Methane Diffusing[J]. Safety in Coal Mines, 2013, 44(1): 5-8.
    [9]HE Yong-sheng. The Mathematical Model Establishment of Coal Gas Diffusion Initial Speed △p [J]. Safety in Coal Mines, 2012, 43(8): 14-17.
    [10]QI Li-ming, LIANG Wei, CHENG Gen-yin. The New Measurement Equipment of Drilling Gas Inrush Initial Velocity[J]. Safety in Coal Mines, 2012, 43(3): 56-59.

Catalog

    Article views (1289) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return