• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
ZHANG Fan, ZHONG Hao. Research on Mine Thermodynamic Disaster Monitoring Based on BP Neural Network[J]. Safety in Coal Mines, 2020, 51(11): 216-220.
Citation: ZHANG Fan, ZHONG Hao. Research on Mine Thermodynamic Disaster Monitoring Based on BP Neural Network[J]. Safety in Coal Mines, 2020, 51(11): 216-220.

Research on Mine Thermodynamic Disaster Monitoring Based on BP Neural Network

More Information
  • Published Date: November 19, 2020
  • Aiming at the problems of the monitoring method of thermodynamic disaster in coal mines is single, which are prone to misjudgment and leakage, a method for monitoring thermodynamic disaster of mines based on BP neural network is proposed. According to the mutual coupling relation of the mine thermodynamic causal factors, the method uses three-level architecture for data-characteristics-decision of multi-source data fusion, first, the feature parameter data is normalized using the Kalman filter algorithm at the data level, and then, BP neural network is used for multi-source fusion recognition of feature parameter data at feature level to obtain the feature recognition result of coal seam spontaneous combustion and open flame combustion. Finally, the characteristic recognition results are fused with gas concentration, coal dust concentration and characteristic signal duration at the decision level to get the final monitoring verdict results. The research shows that this method integrates multi-parameter fusion judgments, improves the accuracy of judgment and identification of mine thermodynamic disaster, can effectively solve the problem of misjudgment and leakage of mine thermodynamic disaster monitoring.
  • [1]
    丁百川.我国煤矿主要灾害事故特点及防治对策[J].煤炭科学技术,2017,45(5):109-114.
    [2]
    梁运涛,侯贤军,罗海珠,等.我国煤矿火灾防治现状及发展对策[J].煤炭科学技术,2016,44(6):1-6.
    [3]
    孙继平,孙雁宇.矿井火灾监测与趋势预测方法研究[J].工矿自动化,2019,45(3):1-4.
    [4]
    王德明.煤矿热动力灾害及特性[J].煤炭学报,2018, 43(1):137-142.
    [5]
    闫晗晗,邢波涛,任璐,等.遥感数据融合技术文献综述[J].电子测量技术,2018,41(9):26-36.
    [6]
    LauBPL, Marakkalage SH, Zhou Y, et al. A Survey of Data Fusion in Smart City Applications[J]. Information Fusion, 2019, 52: 357-374.
    [7]
    侯秀丽,阮进军.无线传感网络多源信息融合技术研究[J].电子世界,2019(5):199-200.
    [8]
    罗俊海,杨阳.基于数据融合的目标检测方法综述[J].控制与决策,2020,35(1):1-15.
    [9]
    傅剑锋,雍静.基于数据融合技术的火灾探测算法[J].低压电器,2007(12):22-24.
    [10]
    刘天奇.不同煤质煤尘云与煤尘层最低着火温度实验研究[J].燃烧科学与技术,2019,25(5):445-450.
    [11]
    沈云鸽,王德明,朱云飞.不同自燃倾向性煤的指标气体产生规律实验研究[J].中国安全生产科学技术,2018,14(4):69-74.
    [12]
    刘浩雄,刘贞堂,钱继发,等.煤尘二次爆炸特性研究[J].工矿自动化,2018,44(6):80-86.
    [13]
    梁燕华,张传斌.基于神经网络数据融合实现火灾预警[J].科技传播,2017,9(4):11-12.
    [14]
    张令心,戴静涵,沈俊凯,等.基于LM-BP神经网络的钢筋混凝土框架结构震害快速预测模型[J].自然灾害学报,2019,28(2):1-9.
    [15]
    Nagalakshmi S, Kamaraj N. On-line Evaluation of Loa-dability Limit for Pool Model with Tcsc Using Back Propagation Neural Network[J]. International Journal of Electrical Power and Energy Systems, 2013, 47: 52.
    [16]
    连方圆,白静.一种改进的基于神经网络的WSN数据融合算法[J].计算机测量与控制,2014,22(2): 476-479.
    [17]
    潘正华.模糊推理算法的数学原理[J].计算机研究与发展,2008,45(S1):165-168.
    [18]
    Ojha V, Abraham A, Sná?觢el V. Heuristic Design of Fuzzy Inference Systems: a Review of Three Decades ofResearch[J]. EngineeringApplications of Artificial Intelligence, 2019, 85: 845-864.
    [19]
    王兰婷,裴道武.一般全蕴涵模糊推理方法[J].模糊系统与数学,2019,33(3):46-55.
    [20]
    张琦,朱合华,黄贤斌,等.基于Mamdani模糊推理的山岭隧道围岩RMR14分级[J].岩土工程学报,2017, 39(11):2116-2124.
    [21]
    王坚,史朝辉,郭新鹏,等.Mamdani模糊推理算法的直觉化扩展[J].计算机科学,2016,43(S1):44-45.
    [22]
    李长龙,刘伟,周邵萍.基于Mamdani模糊推理的槽罐车运输安全评价[J].华东理工大学学报(自然科学版),2017,43(4):591-596.
  • Related Articles

    [1]SHEN Jianting, WANG Fei, HUANG He. Feasibility analysis of “regional pre-pumping and pressure relief and anti-impact” of directional long borehole in Tingnan Coal Mine working face[J]. Safety in Coal Mines, 2022, 53(11): 184-190.
    [2]YIN Wei, GAO Yan, CHEN Jiarui, YAO Zhenfeng, LYU Chunxin. Mechanical Analysis on Pressure Relief Principle of Underlying Coal-rock Mass with Upper Protective Seam Mining Method[J]. Safety in Coal Mines, 2019, 50(9): 197-202.
    [3]LI Siqian. Study on Relief Effect of Upper Protective Coal Seam Mining at Long Distance in Deep Mine[J]. Safety in Coal Mines, 2018, 49(10): 179-182.
    [4]YANG Jingfen, XU Hongjie, HUANG Huazhou. Existence of Barrier Layer of Pressure Relief Gas Extraction and Its Role[J]. Safety in Coal Mines, 2017, 48(8): 5-8,12.
    [5]WANG Zhiquan, CHANG Yuan, XUE Shipeng, XU Li, WANG Yongjing. Analysis of Outburst Prevention Effect of Protective Seam After Mining[J]. Safety in Coal Mines, 2017, 48(4): 164-167.
    [6]ZHENG Jiyu, TIAN Kunyun. Coal Pressure Relief Zone and Gas Extraction Application Ahead of Working Face[J]. Safety in Coal Mines, 2016, 47(6): 140-143.
    [7]XIE Junxiang, WANG Hongsheng, FAN Qiwen, SHUANG Haiqing, ZHAO Xiaodong, DU Zhengxian, YOU Lindong. Determination Method for Borehole Bottom Location of Pressure-relief Gas Extraction Boreholes[J]. Safety in Coal Mines, 2015, 46(9): 16-19.
    [8]ZHANG Shuchuan, LIU Zegong, DAI Guanglong, LIU Jian, ZHU Haijun. Study on Influence Area of Pressure Relief Gas Drainage of Surface Borehole Based on Tracer Technique[J]. Safety in Coal Mines, 2014, 45(9): 1-3,8.
    [9]LIU Jian-gao, XIE Xiao-ping, LIU Zong-zhu. Effect Analysis on Pressure Relief for Protective Seam Mining of Thin Coal Seam in High-gas Coal Seam Group[J]. Safety in Coal Mines, 2013, 44(10): 192-195.
    [10]NIE Bai-sheng, HU Shou-tao, LIU Ming-ju, LIU Yan-wei, LI Xiang-chun. Application of Outburst Elimination Technology for Pre-pumping Coal Seam Gas of Long Boreholes Along Seam in Pansan Coal Mine[J]. Safety in Coal Mines, 2012, 43(12): 120-122.

Catalog

    Article views (29) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return