• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
HOU Enke, YANG Siliang, MIAO Yanping, CHE Xiaoyang, YANG Lei, LU Bo, . Prediction of water enrichment of weathered bedrock based on Bayes discriminant model[J]. Safety in Coal Mines, 2023, 54(1): 180-187.
Citation: HOU Enke, YANG Siliang, MIAO Yanping, CHE Xiaoyang, YANG Lei, LU Bo, . Prediction of water enrichment of weathered bedrock based on Bayes discriminant model[J]. Safety in Coal Mines, 2023, 54(1): 180-187.

Prediction of water enrichment of weathered bedrock based on Bayes discriminant model

More Information
  • Published Date: January 19, 2023
  • Weathered bedrock aquifer is the main water-filled aquifer for coal mining in Jurassic coalfields in northern Shaanxi. The regional prediction of the water richness of weathered bedrock aquifer is the key to mine water control. Taking the central and western part of Hongliulin Minefield as the research area, based on the analysis of the factors affecting the water-richness of the weathered bedrock, the thickness of the weathered bedrock, the core removal rate, the degree of weathering, the combination of lithology, the top elevation of the weathered bedrock and the sand base ratio are selected to use as the discriminant indexes, 41 groups of effective weathered bedrock borehole pumping test data in the study area are used as training samples and verification samples with a 3∶1 random allocation method to construct a water-rich Bayes discriminant analysis model. This model is used to
  • [1]
    侯恩科,谢晓深,王双明,等.中深埋厚煤层开采地下水位动态变化规律及形成机制[J].煤炭学报,2021, 46(5):1404-1416.

    HOU Enke, XIE Xiaoshen, WANG Shuangming, et al. Dynamic law and mechanism of groundwater induced by medium-deep buried and thick coal seam mining[J]. Journal of China Coal Society, 2021, 46(5): 1404-1416.
    [2]
    王双明,孙强,乔军伟,等.论煤炭绿色开采的地质保障[J].煤炭学报,2020,45(1):8-15.

    WANG Shuangming, SUN Qiang, QIAO Junwei, et al. Geological guarantee of coal green mining[J]. Journal of China Coal Society, 2020, 45(1): 8-15.
    [3]
    范立民,马雄德,李永红,等.西部高强度采煤区矿山地质灾害现状与防控技术[J].煤炭学报,2017,42(2):276-285.

    FAN Limin, MA Xiongde, LI Yonghong, et al. Geological disasters and control technology in high intensity mining area of western China[J]. Journal of China Coal Society, 2017, 42(2): 276-285.
    [4]
    姬中奎.柠条塔矿S1210工作面突水条件分析[J].煤矿安全,2014,45(8):188-191.

    JI Zhongkui. Analysis on water inrush condition of S1210 working face in Ningtiaota Coal Mine[J]. Safety in Coal Mines, 2014, 45(8): 188-191.
    [5]
    吴群英,胡雄武,王宏科.陕北矿区地下水资源地面瞬变电磁法探查实践[J].煤炭科学技术,2020,50(5):208-215.

    WU Qunying, HU Xiongwu, WANG Hongke. Exploration practice of ground transient electromagnetic method for groundwater resources in Northern Shaanxi Coal Mining Area[J]. Coal Science and Technology, 2020, 50(5): 208-215.
    [6]
    李文.煤矿采空区地面综合物探方法优化研究[J].煤炭科学技术,2017,45(1):194-199.

    LI Wen. Optimization study of surface comprehensive geophysical detection methods of coal mine goafs[J]. Coal Science and Technology, 2017, 45(1): 194-199.
    [7]
    侯恩科,樊江伟,高利军,等.地面核磁共振技术在隐伏火烧区富水性探测中的应用[J].煤田地质与勘探,2021,49(5):230-237.

    HOU Enke, FAN Jiangwei, GAO Lijun, et al. Application of surface nuclear magnetic resonance technology in detecting water abundance in concealed burnt zone[J]. Coal Geology & Exploration, 2021, 49(5): 230-237.
    [8]
    张军,张涛,王信文.巷道围岩低阻体矿井音频电透视探测校正方法研究[J].煤炭科学技术,2020,48(11):182-190.

    ZHANG Jun, ZHANG Tao, WANG Xinwen. Research on correction method of audio frequency electric perspective detection for low resistivity body in surrounding rock of roadway[J]. Coal Science and Technology, 2020, 48(11): 182-190.
    [9]
    张池,王鹏飞.烧变岩及风化基岩层富水性探查[J].煤炭技术,2018,37(3):175-177.

    ZHANG Chi, WANG Pengfei. Study on water-richness of burnt rock and weathered bedrock[J]. Coal Technology, 2018, 37(3): 175-177.
    [10]
    武强,樊振丽,刘守强,等.基于GIS的信息融合型含水层富水性评价方法—富水性指数法[J].煤炭学报,2011,36(7):1124-1128.

    WU Qiang, FAN Zhenli, LIU Shouqiang, et al. Water-richness evaluation method of water-filled aquifer based on the principle of information fusion with GIS: Water-richness index method[J]. Journal of China Coal Society, 2011, 36(7): 1124-1128.
    [11]
    魏久传,赵智超,谢道雷,等.基于岩性及结构特征的砂岩含水层富水性评价[J].山东科技大学学报(自然科学版),2020,39(3):13-23.

    WEI Jiuchuan, ZHAO Zhichao, XIE Daolei, et al. Water-abundance evaluation of sandstone aquifer based on lithologic and structural characteristics[J]. Journal of Shandong University of Science and Technology(Natural Science), 2020, 39(3): 13-23.
    [12]
    侯恩科,纪卓辰,车晓阳,等.基于改进AHP和熵权法耦合的风化基岩富水性预测方法[J].煤炭学报,2019,44(10):3164-3173.

    HOU Enke, JI Zhuochen, CHE Xiaoyang, et al. Water abundance prediction method of weathered bedrock based on improved AHP and the entropy weight method[J]. Journal of China Coal Society, 2019, 44(10): 3164-3173.
    [13]
    刘少伟,李文平,刘强强.层次权重模糊聚类分析法在煤层顶板富水性预测中的应用[J].煤炭技术,2017,36(2):208-210.

    LIU Shaowei, LI Wenping, LIU Qiangqiang. Application of analytic hierarchy process fuzzy clustering analysis method for mine water disaster[J]. Coal Technology, 2017, 36(2): 208-210.
    [14]
    付萍杰,魏久传,谢道雷,等.基于多因素模糊聚类分析法的底板突水危险性评价[J].煤炭技术,2015,34(1):163-166.

    FU Pingjie, WEI Jiuchuan, XIE Daolei, et al. Risk evaluation of water inrush from seam floor based on multifactor fuzzy clustering analysis[J]. Coal Technology, 2015, 34(1): 163-166.
    [15]
    申宝宏,刘天泉.模糊集合理论及其在煤炭科研中的应用[J].煤炭科学技术,1988(5):44-48.
    [16]
    侯恩科,童仁剑,王苏健,等.陕北侏罗纪煤田风化基岩富水性Fisher模型预测方法[J].煤炭学报,2016, 41(9):2312-2318.

    HOU Enke, TONG Renjian, WANG Sujian, et al. Prediction method for the water enrichment of weathered bedrock based on Fisher model in Northern Shaanxi Jurassic coal-field[J]. Journal of China Coal Society, 2016, 41(9): 2312-2318.
    [17]
    侯恩科,闫鑫,郑永飞,等.Bayes判别模型在风化基岩富水性预测中的应用[J].西安科技大学学报,2019,39(6):942-949.

    HOU Enke, YAN Xin, ZHENG Yongfei, et al. Application of Bayes discriminant model in prediction of water enrichment of weathered bedrock[J]. Journal of Xi’an University of Science and Technology, 2019, 39(6): 942-949.
    [18]
    许珂.台格庙矿区顶板涌(突)水危险性评价与矿井涌水量预测[D].北京:中国矿业大学(北京),2016.
    [19]
    董书宁,刘其声.华北型煤田中奥陶系灰岩顶部相对隔水段研究[J].煤炭学报,2009,34(3):289-292.

    DONG Shuning, LIU Qisheng. Study on relative aguic-lude existed in mid-Ordovician limestone top in North China coal field[J]. Journal of China Coal Society, 2009, 34(3): 289-292.
    [20]
    文畅平.基于Bayes判别分析法的冲击地压预测与危险性分级[J].自然灾害学报,2015,24(5):229.

    WEN Changping. Prediction and hazard classification of bumping geopressure based on Bayes discriminant analysis method[J]. Journal of Natural Disasters, 2015, 24(5): 229-236.
    [21]
    文畅平.岩体质量分级的Bayes判别分析方法[J].煤炭学报,2008,33(4):395-399.

    WEN Changping. Bayes discriminant analysis method of rock-mass quality classification[J]. Journal of China Coal Society, 2008, 33(4): 395-399.
    [22]
    史秀志,周健,郑纬,等.边坡稳定性预测的Bayes判别分析方法及应用[J].四川大学学报(工程科学版),2010,42(3):63-68.

    SHI Xiuzhi, ZHOU Jian, ZHENG Wei, et al. Bayes discriminant analysis method and its application for prediction of slope stability[J]. Journal of Sichuan University(Engineering Science Edition), 2010, 42(3): 63-68.
  • Related Articles

    [1]YAO Wenjun, DENG Cunbao, FAN Nan, SHEN Wenmai, ZHANG Linfeng, ZHANG Pengli. Numerical simulation of fluid-solid-thermal coupling for CO2 injection enhanced mining in deep coal seams[J]. Safety in Coal Mines, 2024, 55(7): 31-38. DOI: 10.13347/j.cnki.mkaq.20230293
    [2]FAN Yongpeng, HUO Zhonggang, WANG Yong. Numerical simulation of CO2-ECBM based on fluid-solid-thermal coupled model[J]. Safety in Coal Mines, 2022, 53(2): 162-169.
    [3]YANG Changde, WANG Peng, MAO Jinfeng, LI Jinbo, ZHANG Haidong. Numerical Simulation of Triaxial Compression Experiment of Rock Mass Under Thermal-Fluid-Solid Coupling[J]. Safety in Coal Mines, 2020, 51(5): 50-55.
    [4]FENG Yushi, LIANG Yongchang. Numerical Analysis of Fluid-solid-heat Coupling of Surrounding Rock Around Coalbed Methane Horizontal Wells[J]. Safety in Coal Mines, 2018, 49(1): 206-209.
    [5]ZHANG Bei. Numerical Simulation on Gas-liquid-solid Coupling Mechanism of Gas Drainage in Water-bearing Coal Seam[J]. Safety in Coal Mines, 2017, 48(5): 180-183.
    [6]LI Ke. Fluid-solid Coupling Analysis of Coal Seam Floor Failure Features[J]. Safety in Coal Mines, 2017, 48(3): 171-174.
    [7]NI Hongyang, PU Hai, LI Yun. Simulation Study on Seepage Failure of Sand Based on Fluid-solid Coupling Theory[J]. Safety in Coal Mines, 2016, 47(9): 39-41.
    [8]WANG Fei, ZHU Hongli, ZHANG Jianzhen. Surrounding Rock Stability Numerical Simulation in Water-rich Roadway Based on Fluid-solid Coupling Theory[J]. Safety in Coal Mines, 2016, 47(4): 219-221,225.
    [9]JIN Yongfei, LI Haitao, MA Rong, ZHAO Xianke. Numerical Simulation of Fluid-structure Interaction in Elbow Segment of Thickening Colloid Conveying Pipeline[J]. Safety in Coal Mines, 2015, 46(1): 13-16,21.
    [10]LI Wen-min, GAO Zhao-ning, MENG Xiang-rui, ZHANG Feng-da, LI Qi, YUAN Lin. The Fluid-solid Coupling Numerical Simulation of Mining Above Confined Water[J]. Safety in Coal Mines, 2013, 44(2): 57-60.
  • Cited by

    Periodical cited type(6)

    1. 胡俭,刘茂霞,王航,郭曦蔓,张铎. 粒度对煤吸附/解吸一氧化碳的影响. 煤矿安全. 2024(01): 107-115 . 本站查看
    2. 金霏阳,陈学习,高泽帅. 不同变质程度煤体微孔多重分形特征研究. 煤矿安全. 2024(03): 9-17 . 本站查看
    3. 张慧梅,成瑞,陈世官,郝乐乐. 冻融红砂岩孔隙结构演化规律及多重分形特性. 科学技术与工程. 2024(25): 10901-10909 .
    4. 李子全,张东明,张林玉,王小蕾. 高阶原生煤与构造煤的孔隙及分形特征研究. 煤矿安全. 2023(08): 39-44 . 本站查看
    5. 卢宏伟,徐宏杰,杨祎超,丁海,祝月,苟博明,戴王杰. 煤储层孔隙结构与甲烷吸附能量变化的非均质性特征. 科学技术与工程. 2023(30): 12817-12826 .
    6. 杨红红. 煤体变质程度对突出煤体吸附/解吸影响. 当代化工研究. 2022(13): 13-15 .

    Other cited types(6)

Catalog

    Article views (21) PDF downloads (16) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return