• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
FENG Yushi, LIANG Yongchang. Numerical Analysis of Fluid-solid-heat Coupling of Surrounding Rock Around Coalbed Methane Horizontal Wells[J]. Safety in Coal Mines, 2018, 49(1): 206-209.
Citation: FENG Yushi, LIANG Yongchang. Numerical Analysis of Fluid-solid-heat Coupling of Surrounding Rock Around Coalbed Methane Horizontal Wells[J]. Safety in Coal Mines, 2018, 49(1): 206-209.

Numerical Analysis of Fluid-solid-heat Coupling of Surrounding Rock Around Coalbed Methane Horizontal Wells

More Information
  • Published Date: January 19, 2018
  • The well wall instability is one of the important reasons that affect the industrial exploitation of coalbed methane. In this article, the coalbed methane horizontal well of No.9 coal seam in Ningwu basin was taken as the research object. We analyze the stress distribution and deformation around the well under the influence of fluid-solid-heat coupling and without fluid-solid-heat coupling by the finite element software. The simulation results from fluid-solid-heat coupling are in good agreement with the engineering practice. The Tresca stress, the first, the second and the third principal stresses in the surrounding rock of horizontal well are in the region of stress fluctuation, so it is easy to produce new fractures, and reduce the strength of surrounding rock, which causes instability accidents of well wall easily. In the arc length of AB, in the well section of surrounding rock around the wall (larger than 8.0 cm), the change rate of surrounding rock around well is more than 5%, which is easy to produce well wall instability accidents.
  • [1]
    范翔宇,张千贵,艾巍,等.煤岩储气层岩石蠕变特性与本构模型研究[J].岩石力学与工程学报,2013,32(S2):3732-3739.
    [2]
    范翔宇,梁永昌,张千贵,等.基于煤岩蠕变力学实验的西原模型改进与分析[J].煤矿安全,2016,47(10):212-215.
    [3]
    陈勉,赵海峰,金衍,等.非连续介质力学模型预测煤层井眼稳定性[J].石油学报,2013,34(1):145-150.
    [4]
    陈子剑,刘伟,邓金根,等.多因素耦合条件下煤层井壁稳定性分析模型研究[J].煤炭技术,2016,35(2):66-69.
    [5]
    岳也,彭扬东,陈书雅,等.正电胶钻井液增强煤层气钻井井壁稳定性试验研究[J].煤炭科学技术,2016,44(1):83-87.
    [6]
    邓钧耀,张毅,纪元,等.鄂尔多斯盆地东缘煤层气钻井实践与认识[J].煤田地质与勘探,2017,45(2):157-163.
    [7]
    刘升贵,彭智高,李仲力,等.煤层气水平分支井稳定性的数值分析[J].辽宁工程技术大学学报(自然科学版),2015,34(7):769-773.
    [8]
    杨健,倪元勇,王生维,等.影响煤层气水平井井壁稳定性的地质因素分析[J].石油钻采工艺,2015,37(5):5-8.
    [9]
    张千贵,梁永昌,范翔宇,等.基于能量守恒定律对西原模型的改进与验证[J].重庆大学学报,2016,39(3):117-123.
    [10]
    张彪,张遂安,夏立满.基于集成型评价方法的煤层气井壁稳定性评价[J].煤炭科学技术,2016,44(S1):94-97.
  • Related Articles

    [1]WANG Yanbin. Development of data acquisition instrument for coal and gas outburst based on wireless communication[J]. Safety in Coal Mines, 2022, 53(12): 101-106.
    [2]Research progress on intelligent monitoring and early warning technology of fire risk in coal mine belt conveyor transportation[J]. Safety in Coal Mines, 2022, 53(9): 47-54.
    [3]HUANG Hesong, WANG Jiahao, DAI Chuanhao, TIAN Chengjin, WANG Zhen. An intrinsically safe low-power data acquisition system for mine based on XBee3[J]. Safety in Coal Mines, 2021, 52(6): 143-148.
    [4]SHU Lichun. Cloud edge integrated coal mine safety production risk monitoring and early warning platform based on big data[J]. Safety in Coal Mines, 2021, 52(5): 144-148.
    [5]ZHANG Xiantao. Android Bluetooth Data Acquisition for Directional Drilling of Coal Mine by Wired MWD[J]. Safety in Coal Mines, 2019, 50(8): 111-113.
    [6]YIN Peng, XIAO Kaitai, XIAO Changliang, ZENG Zhi. Data Acquisition Method of Coal Mine Safety Monitoring System[J]. Safety in Coal Mines, 2019, 50(8): 104-106.
    [7]ZHANG Weijie. Implementation of Data Acquisition Efficiency Optimization Based on Multi-threading[J]. Safety in Coal Mines, 2019, 50(5): 113-115.
    [8]ZHANG Qiang. Wireless Data Acquisition Instrument for Roof Pressure Based on STM32[J]. Safety in Coal Mines, 2018, 49(6): 95-98.
    [9]ZHOU Haikun. Design of Data Acquisition System for High Concurrent Coal Mine Safety Monitoring[J]. Safety in Coal Mines, 2018, 49(6): 85-87,91.
    [10]BI Chang-hu, ZENG Wei, JIN Shu-jun, LI Bin-hu. The Application of FPGA in Mine-used Data Acquisition System[J]. Safety in Coal Mines, 2012, 43(9): 95-97.
  • Cited by

    Periodical cited type(14)

    1. 夏利玲,孙翠玲,张慧,黄春香. 基于CAN和REST物联网技术的智能矿山安全检测系统研发. 金属矿山. 2024(03): 215-220 .
    2. 戚建刚. 智慧应急法制模式之初探. 当代法学. 2024(03): 43-54 .
    3. 于永政,陈虹燕,张宝林,王浩. 矿山安全“再监督”监管平台设计与应用研究. 工业安全与环保. 2024(07): 79-82+89 .
    4. 范海波. 基于卫星遥感及GIS空天地一体化智慧矿山技术研究及应用. 世界有色金属. 2024(12): 55-57 .
    5. 王竑达,司书国,王淼,张博文,于倩倩. 矿山安全风险智能监测预警系统研究. 邮电设计技术. 2024(11): 25-30 .
    6. 成连华,张璇,郭慧敏,曹东强. 智能化背景下矿工风险感知水平对不安全行为产生的影响. 西安科技大学学报. 2024(06): 1041-1049 .
    7. 蔡强. 矿井环境智能化安全监测技术的研究现状. 内蒙古煤炭经济. 2023(01): 106-108 .
    8. 任艳. 煤矿智能监控系统在生产中的应用探究. 内蒙古煤炭经济. 2023(01): 172-174 .
    9. 毛乾宇. 基于卫星遥感及GIS空天地一体化智慧矿山技术研究及应用. 煤炭科技. 2023(03): 172-176 .
    10. 任志成,时宝,胡继峰,伦嘉云. 煤矿安全管理智能化建设及发展研究. 中国煤炭. 2023(07): 61-66 .
    11. 李雄锋,李刚,张枝伟,肖铸. 贵州煤矿“电子封条”智能监管平台建设与应用研究. 内蒙古煤炭经济. 2023(10): 115-117 .
    12. 任志成,孔德中,宋高峰,许鹏飞,李淋. 基于GRA和AHP的煤矿一般事故防控研究. 矿业研究与开发. 2023(12): 131-137 .
    13. 王国法,富佳兴,孟令宇. 煤矿智能化创新团队建设与关键技术研发进展. 工矿自动化. 2022(12): 1-15 .
    14. 于世勇. 煤矿用空压机智能群控节能控制系统的应用研究. 内蒙古煤炭经济. 2022(21): 21-23 .

    Other cited types(6)

Catalog

    Article views (231) PDF downloads (0) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return