• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
YANG Changde, WANG Peng, MAO Jinfeng, LI Jinbo, ZHANG Haidong. Numerical Simulation of Triaxial Compression Experiment of Rock Mass Under Thermal-Fluid-Solid Coupling[J]. Safety in Coal Mines, 2020, 51(5): 50-55.
Citation: YANG Changde, WANG Peng, MAO Jinfeng, LI Jinbo, ZHANG Haidong. Numerical Simulation of Triaxial Compression Experiment of Rock Mass Under Thermal-Fluid-Solid Coupling[J]. Safety in Coal Mines, 2020, 51(5): 50-55.

Numerical Simulation of Triaxial Compression Experiment of Rock Mass Under Thermal-Fluid-Solid Coupling

More Information
  • Published Date: May 19, 2020
  • To explore the relationship between permeability characteristics of rock mass and stress field and temperature field, the mechanical behavior law of rock mass under coupling conditions is further obtained. Under the coupling conditions of temperature field, seepage field and stress field, the numerical simulation of triaxial compression tests of rock mass with different confining pressure gradients and Darcy permeability coefficients is carried out. This paper shows that the confining pressure chamber is one of the factors that influence the permeability of rock mass. Under the same conditions of other fields, the larger the confining pressure, the lower the permeability of rock mass. The stress field acting on the rock mass has obvious influence on the seepage field flowing through the rock mass. The influence of seepage field through rock mass on temperature field inside rock mass is dominant. The effect of stress field acting on rock mass on the temperature field of rock mass distribution is not very significant. The triaxial compression test simulation of rock mass under multi-field coupling condition shows that the end effect is remarkable, the stress distribution at the edge is concentrated, and the stress distribution of rock mass is symmetrical.
  • [1]
    袁亮.煤炭精准开采科学构想[J].煤炭学报,2017,42(1):1-7.
    [2]
    刘东,许江,尹光志,等.多场耦合煤矿动力灾害大型模拟试验系统研制与应用[J].岩石力学与工程学报,2013,32(5):966-975.
    [3]
    谢和平,张泽天,高峰,等.不同开采方式下煤岩应力场-裂隙场-渗流场行为研究[J].煤炭学报,2016,41(10):2405-2417.
    [4]
    江宗斌,姜谙男,李宏,等.加卸载条件下石英岩蠕变-渗流耦合规律试验研究[J].岩土工程学报,2017,39(10):1832-1841.
    [5]
    杨金保,冯夏庭,潘鹏志.考虑应力历史的岩石单裂隙渗流特性试验研究[J].岩土力学,2013,34(6):1629.
    [6]
    陈天宇,冯夏庭,张希巍,等.黑色页岩力学特性及各向异性特性试验研究[J].岩石力学与工程学报,2014,33(9):1772-1779.
    [7]
    曹亚军,王伟,徐卫亚,等.低渗透岩石流变过程渗透演化规律试验研究[J].岩石力学与工程学报,2015,34(S2):3822-3829.
    [8]
    赵延林,曹平,赵阳升,等.双重介质温度场-渗流场-应力场耦合模型及三维数值研究[J].岩石力学与工程学报,2007(S2):4024-4031.
    [9]
    张树光,李志建,徐义洪,等.裂隙岩体流-热耦合传热的三维数值模拟分析[J].岩土力学,2011,32(8):2507.
    [10]
    刘泉声.多场耦合作用下岩体裂隙扩展演化关键问题研究[J].岩土力学,2014,35(2):305-320.
    [11]
    康永水.裂隙岩体冻融损伤及多场耦合过程研究[D].北京:中国科学院大学,2012.
    [12]
    冯梅梅,杨维好,高娟.含裂隙构造渗流地层人工冻结壁发育及影响因素分析[J].采矿与安全工程学报,2014,31(6):976-981.
    [13]
    高娟,冯梅梅,杨维好.渗流作用下裂隙岩体冻结温度场分布规律研究[J].采矿与安全工程学报,2013,30(1):68-73.
    [14]
    王军祥,姜谙男,宋战平.岩石弹塑性应力-渗流-损伤耦合模型研究(Ⅱ):参数反演及数值模拟[J].岩土力学,2015,36(12):3606-3614.
    [15]
    王军祥,姜谙男,宋战平.岩石弹塑性应力-渗流-损伤耦合模型研究(Ⅰ):模型建立及其数值求解程序[J].岩土力学,2014,35(S2):626-637.
    [16]
    谢和平.“深部岩体力学与开采理论”研究构想预期[J].工程科学与技术,2017,49(2):1-16.
    [17]
    谢和平,高峰,鞠杨.深部岩体力学研究与探索[J]岩石力学与工程学报,2015,34(11):2161-2178.
    [18]
    何满潮.深部软岩工程的研究进展与挑战[J].煤炭学报,2014,39(8):1409-1417.
    [19]
    崔中兴,仵彦卿,蒲毅彬,等.渗流状态下砂岩的三维实时CT观测[J].岩石力学与工程学报,2005(8):1390.
    [20]
    王刚.COMSOL Multiphysics工程实践与理论仿真——多物理场数值分析技术[M].北京:电子工业出版社,2013.
  • Related Articles

    [1]YANG Jian, MENG Delong, LIU Haodong, WANG Gang. Temperature distribution law and cooling simulation of high temperature tunneling roadway[J]. Safety in Coal Mines, 2023, 54(3): 40-45.
    [2]WANG Lin, LI Tingchun, ZHANG Hao, DU Yiteng, ZHANG Zhigao. Simulation Study on Maximum Cycle Footage During Roadway Excavation[J]. Safety in Coal Mines, 2019, 50(1): 226-230.
    [3]DAI Jiangjiao, HUANG Jiahai, ZHAO Bin, CHENG Heng, LI Jun. Numerical Analysis of Ventilation System in Large Section Simulation Tunneling Roadway[J]. Safety in Coal Mines, 2016, 47(11): 193-196.
    [4]GENG Cheng. Research on Vibration Characteristics of Blasting Excavation in Rectangular Soft Rock Roadway[J]. Safety in Coal Mines, 2016, 47(8): 57-60.
    [5]WANG Fei, ZHU Hongli, ZHANG Jianzhen. Surrounding Rock Stability Numerical Simulation in Water-rich Roadway Based on Fluid-solid Coupling Theory[J]. Safety in Coal Mines, 2016, 47(4): 219-221,225.
    [6]YANG Dengfeng, CHEN Zhonghui, LIU Xin, GAO Qin, WANG Li'nan. Numerical Simulation of Mining-induced Water Bursting Law of Coal Floor with Hidden Faults[J]. Safety in Coal Mines, 2015, 46(11): 193-195,199.
    [7]ZHAO Yuting, DUAN Dong, YANG Yao, FANG Chaohe, QU Xiaoming, KANG Zhiqin. Numerical Simulation on Influence Factors of Ground Stress at the End of Fault[J]. Safety in Coal Mines, 2015, 46(10): 210-212,213.
    [8]SUN Haiyang, WANG Lianguo, LU Yinlong, HUANG Yaoguang. Numerical Simulation and Parameter Optimization of Advance Anchor Bolt Support in Fault[J]. Safety in Coal Mines, 2015, 46(8): 205-208.
    [9]WANG Chun. Bolt-grouting Support Technology for Mining Roadway Passing Through Water-bearing Fault[J]. Safety in Coal Mines, 2015, 46(6): 73-76.
    [10]HUANG Cun-han, HUANG Jun-jie, LI Zhen-hua. The Water Inrush Numerical Simulation of Minor Faults Concealed in Coal Seam Floor[J]. Safety in Coal Mines, 2013, 44(10): 24-26.

Catalog

    Article views (26) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return