• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
WANG Xiaolong, CHANG Jianhong, PAN Jin, ZHAO Liqun, SHI Hongkai, WEI Ziliang, LI Chao, YOU Xin, XIE Ao, KONG Lingpo, LIU Lizong. Controlling technology of corrosion of underground anchor net support material[J]. Safety in Coal Mines, 2022, 53(8): 104-111,119.
Citation: WANG Xiaolong, CHANG Jianhong, PAN Jin, ZHAO Liqun, SHI Hongkai, WEI Ziliang, LI Chao, YOU Xin, XIE Ao, KONG Lingpo, LIU Lizong. Controlling technology of corrosion of underground anchor net support material[J]. Safety in Coal Mines, 2022, 53(8): 104-111,119.

Controlling technology of corrosion of underground anchor net support material

More Information
  • Published Date: August 19, 2022
  • Steel mesh supporting material(SMS) faces serious corrosion risks at underground application in the high-humidity environment of Shendong Coal Group Company. It’s better to supply a proper and onsite-suitable technology for protecting SMS from corrosion at coal roadway situation. In this paper, a kind of anti-rust oil which featured with non-volatile, fine fluidity, strong adsorption effect and excellent demulsification is proposed as a coating material for SMS. The research results show that the SMS with anti-rust oil layer can show obvious protective and stable effect in the simulated corrosion situations include humid, immersed and spraying water environment from coal roof. Furthermore, the corrosion rates of SMS decreased stably at below 0.005 mm/a by electrochemical test when anti-rust oil equipped with cross section and corrosion surface of SMS on active service. By applying self-developed anti-rust oil to the in-service SMS that have been corroded in the roadway, the corrosion process can be effectively inhibited, and its service life can be prolonged.
  • [1]
    新华社. “十四五”末我国煤炭年产量将控制在41亿吨[EB/OL]. [2021-11-01] http://www.gov.cn/xinwen/2021-03/03/content_5590004.htm.
    [2]
    赵秀龙.煤矿综采设备的腐蚀机理及其防腐蚀对策 [J].机械管理开发,2016,31(4):142-143.

    ZHAO Xiulong. Anti-corrosion and the mechanism of corrosion of fully mechanized mining equipment[J]. Mechanical Management and Development, 2016, 31(4): 142-143.
    [3]
    褚晓威,鞠文君,付玉凯.高矿化度矿井水中螺纹钢锚杆点蚀机制研究[J].矿业科学学报,2021,6(3):305.

    CHU Xiaowei, JU Wenjun, FU Yukai. Study on pitting mechanism of rebar rockbolt in highly-mineralized mine water[J]. Journal of Mining Science and Technology, 2021, 6(3): 305.
    [4]
    刘亚,吴夏,石卫国,等.某煤矿井下液压支架结构件腐蚀机理研究[J].涂层与防护,2021,42(9):1-7.

    LIU Ya, WU Xia, SHI Weiguo, et al. Research on corrosion mechanism of underground hydraulic support structure in coal mine[J]. Coating and Protection, 2021, 42(9): 1-7.
    [5]
    Hadjigeorgiou J, Dorion J F, Ghali E. Support system performance under different corrosion conditions[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2008, 108(6): 359-365.
    [6]
    朱乾坤.煤矿巷道树脂锚杆支护系统腐蚀现象试验研究[D].焦作:河南理工大学,2017.
    [7]
    高议民.煤矿巷道锚网支护机理及围岩变形规律分析 [J].能源与环保,2021,43(1):125-128.

    GAO Yimin. Analysis on bolt mesh supporting mechanism and surrounding rock deformation law in coal mine roadway[J]. China Energy and Environmental Protection, 2021, 43(1): 125-128.
    [8]
    康红普,姜鹏飞,黄炳香,等.煤矿千米深井巷道围岩支护-改性-卸压协同控制技术[J].煤炭学报,2020, 45(3):845-864.

    KANG Hongpu, JIANG Pengfei, HUANG Bingxiang, et al. Roadway strata control technology by means of bolting-modification destressing in synergy in 1 000 m deep coal mines[J]. Journal of China Coal Society, 2020, 45(3): 845-864.
    [9]
    姜海.煤矿井下带式输送机机架防腐技术应用研究 [J].中国新技新产品,2019(17):40-41.
    [10]
    刘娴,沈婷,程欢.环氧树脂防腐涂层的研究进展 [J].塑料科技,2021,49(9):96-100.

    LIU Xian, SHEN Ting, CHENG Huan. Research prog-ress of epoxy resin anticorrosive coatings[J]. Plastics Science and Technology, 2021, 49(9): 96-100.
    [11]
    Dinnissen T. VOC free Waterborne epoxy dispersions and emulsions for ambient cured coatings[J]. Ochrona przed Korozj, 2007(5): 210-215.
    [12]
    李雨朋.环境友好型环氧防腐涂层材料的制备及性能研究[D].上海:复旦大学,2012.
    [13]
    黄文轩.第16讲:防锈剂的作用机理、主要品种及应用[J].石油商技,2018,36(2):84-95.
    [14]
    顾晴.防锈油的发展趋势[J].合成润滑材料,2008(2):18-22.

    GU Qing. Developing trend of antirust oil[J]. Synthetic Lubricants, 2008(2): 18-22.
    [15]
    欧阳平,蒋豪,张贤明,等.防锈油的研究进展[J].应用化工,2015,44(5):944-946.

    OUYANG Ping, JIANG Hao, ZHANG Xianming, et al. Research progress of antirust oil[J]. Applied Chemical Industry, 2015, 44(5): 944-946.
    [16]
    曲胜,陈春风,陈磊,等.燃气轮机用防锈剂的研制及性能研究[J].润滑油,2016,31(2):17.

    QU Sheng, CHEN Chunfeng, CHEN Lei, et al. Study on the preparation and properties of rust inhibitor for gas turbine oil[J]. Lubricating Oil, 2016, 31(2): 17.
    [17]
    宋春雪,刘汉壮,朱凯歌,等.1,3,4-噻二唑衍生物的合成及抗腐蚀性能研究[J].润滑油,2016,31(5):47-50.

    SONG Chunxue, LIU Hanzhuang, ZHU Kaige, et al. Synthesis and anti-corrosion property study of 1,3,4-thiadiazole derivatives[J]. Lubricating Oil, 2016, 31(5): 47-50.
    [18]
    杜彭玉,梁钊,刘敬瑄,等.三种防锈剂在PAO8基础油中的高温腐蚀抑制及防腐蚀性能[J].润滑与密封,2021,46(4):39-50.

    DU Pengyu, LIANG Zhao, LIU Jingxuan, et al. High temperature corrosion inhibition and anticorrosion Performance of three antirust agents in PAO8 base oil[J]. Lubrication Engineering, 2021, 46(4): 39-50.
    [19]
    杨奔奔,付洪瑞,李莎莎,等.典型防锈剂在不同基础油中的防锈性能研究[J].电镀与涂饰,2015,34(20):1166-1171.

    YANG Benben, FU Hongrui, LI Shasha, et al. Study on rust prevention performance of typical rust inhibitors in different base oils[J]. Electroplating & Finishing, 2015, 34(20): 1166-1171.
    [20]
    方刚,杨建.榆横矿区巴拉素井田水文地球化学特征研究[J].煤矿安全,2019,50(8):56.

    FANG Gang, YANG Jian. Research on hydrogeochemical characteristics in Balasu well field of Yuheng Mining area[J]. Safety in Coal Mines, 2019, 50(8): 56.
    [21]
    曹楚南.由弱极化曲线拟合估算腐蚀过程的电化学动力学参数[J].中国腐蚀与防护学报,1985(3):155-164.
    [22]
    苏德中.水质参数对镀锌钢腐蚀的影响[J].石油化工腐蚀与防护,1989(2):27-36.
    [23]
    程玉山,徐会武,刘荣江,等.饱和指数和稳定指数计算方法研究[J].清洗世界,2012,28(9):17.

    CHENG Yushan, XU Huiwu, LIU Rongjiang, et al. Study on calculation method of saturation index and stability index[J]. Cleaning World, 2012, 28(9): 17.
    [24]
    唐致文.小城镇管网水质化学稳定技术研究[J].城镇供水,2017(4):90-93.
    [25]
    WANG Gang, WU Qing, LI Xuezhong, et al. Microscopic analysis of steel corrosion products in seawater and sea-sand concrete[J]. Materials, 2019, 12(20): 3330.
    [26]
    DHOUIBI Ines, MASMOUDI Fatma, BOUAZIZ Mohamed, et al. A study of the anti-corrosive effects of essential oils of rosemary and myrtle for copper corrosion in chloride media[J]. Arabian Journal of Chemistry, 2021, 14(2): 102961.
    [27]
    王凤平,康万利,敬和民.腐蚀电化学原理、方法及应用[M].北京:化学工业出版社.2008:315.
    [28]
    张承典,徐乃欣,丁翠红,等.研究薄层防锈油的电化学技术[J].中国腐蚀与防护学报,1991(3):263.

    ZHANG Chengdian, XU Naixin, DING Cuihong, et al. Electrochemical technique for investigating thin film rust preventive oil[J]. Journal of Chinese Society for Corrosion and Protection, 1991(3): 263-270.
    [29]
    徐接旺,郭太雄,董学强,等.防锈油涂油量对DP590双相钢表面状态及耐蚀性能的影响[J].电镀与涂饰,2021,40(9):715-719.

    XU Jiewang, GUO Taixiong, DONG Xueqiang, et al. Effect of antirust oil amount on surface state and corrosion resistance of DP590 dual-phase steel[J]. Electroplating & Finishing, 2021, 40(9): 715-719.
    [30]
    谭胜,陈学军,李玉秋.软膜薄层防锈油的研制[J].河北化工,2004(3):36-38.

    TAN Sheng, CHEN Xuejun, LI Yuqiu. Development of soft film rust preventive oil[J]. Coal and Chemical Industry, 2004(3): 36-38.
  • Related Articles

    [1]YAO Wenjun, DENG Cunbao, FAN Nan, SHEN Wenmai, ZHANG Linfeng, ZHANG Pengli. Numerical simulation of fluid-solid-thermal coupling for CO2 injection enhanced mining in deep coal seams[J]. Safety in Coal Mines, 2024, 55(7): 31-38. DOI: 10.13347/j.cnki.mkaq.20230293
    [2]FAN Yongpeng, HUO Zhonggang, WANG Yong. Numerical simulation of CO2-ECBM based on fluid-solid-thermal coupled model[J]. Safety in Coal Mines, 2022, 53(2): 162-169.
    [3]YANG Changde, WANG Peng, MAO Jinfeng, LI Jinbo, ZHANG Haidong. Numerical Simulation of Triaxial Compression Experiment of Rock Mass Under Thermal-Fluid-Solid Coupling[J]. Safety in Coal Mines, 2020, 51(5): 50-55.
    [4]FENG Yushi, LIANG Yongchang. Numerical Analysis of Fluid-solid-heat Coupling of Surrounding Rock Around Coalbed Methane Horizontal Wells[J]. Safety in Coal Mines, 2018, 49(1): 206-209.
    [5]ZHANG Bei. Numerical Simulation on Gas-liquid-solid Coupling Mechanism of Gas Drainage in Water-bearing Coal Seam[J]. Safety in Coal Mines, 2017, 48(5): 180-183.
    [6]LI Ke. Fluid-solid Coupling Analysis of Coal Seam Floor Failure Features[J]. Safety in Coal Mines, 2017, 48(3): 171-174.
    [7]NI Hongyang, PU Hai, LI Yun. Simulation Study on Seepage Failure of Sand Based on Fluid-solid Coupling Theory[J]. Safety in Coal Mines, 2016, 47(9): 39-41.
    [8]WANG Fei, ZHU Hongli, ZHANG Jianzhen. Surrounding Rock Stability Numerical Simulation in Water-rich Roadway Based on Fluid-solid Coupling Theory[J]. Safety in Coal Mines, 2016, 47(4): 219-221,225.
    [9]JIN Yongfei, LI Haitao, MA Rong, ZHAO Xianke. Numerical Simulation of Fluid-structure Interaction in Elbow Segment of Thickening Colloid Conveying Pipeline[J]. Safety in Coal Mines, 2015, 46(1): 13-16,21.
    [10]LI Wen-min, GAO Zhao-ning, MENG Xiang-rui, ZHANG Feng-da, LI Qi, YUAN Lin. The Fluid-solid Coupling Numerical Simulation of Mining Above Confined Water[J]. Safety in Coal Mines, 2013, 44(2): 57-60.
  • Cited by

    Periodical cited type(6)

    1. 胡俭,刘茂霞,王航,郭曦蔓,张铎. 粒度对煤吸附/解吸一氧化碳的影响. 煤矿安全. 2024(01): 107-115 . 本站查看
    2. 金霏阳,陈学习,高泽帅. 不同变质程度煤体微孔多重分形特征研究. 煤矿安全. 2024(03): 9-17 . 本站查看
    3. 张慧梅,成瑞,陈世官,郝乐乐. 冻融红砂岩孔隙结构演化规律及多重分形特性. 科学技术与工程. 2024(25): 10901-10909 .
    4. 李子全,张东明,张林玉,王小蕾. 高阶原生煤与构造煤的孔隙及分形特征研究. 煤矿安全. 2023(08): 39-44 . 本站查看
    5. 卢宏伟,徐宏杰,杨祎超,丁海,祝月,苟博明,戴王杰. 煤储层孔隙结构与甲烷吸附能量变化的非均质性特征. 科学技术与工程. 2023(30): 12817-12826 .
    6. 杨红红. 煤体变质程度对突出煤体吸附/解吸影响. 当代化工研究. 2022(13): 13-15 .

    Other cited types(6)

Catalog

    Article views (45) PDF downloads (18) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return