• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
WEN Hengcong, LIU Baobao, YANG Haitao. High efficiency three dimensional water exploration system[J]. Safety in Coal Mines, 2021, 52(5): 139-143.
Citation: WEN Hengcong, LIU Baobao, YANG Haitao. High efficiency three dimensional water exploration system[J]. Safety in Coal Mines, 2021, 52(5): 139-143.

High efficiency three dimensional water exploration system

More Information
  • Published Date: May 19, 2021
  • In order to optimize the detection effect of water-bearing capacity of lower strata in the mining area, based on the electric perspective method and high density electric method, combined with the spatial potential distribution theory of the whole electric field, an efficient and three-dimensional floor water detection system was proposed. The system takes the axial unipole-dipole method as the bottom device, the three-dimensional power supply combination as the power supply device, the multi-channel acquisition technology as the measuring device. The results show that using the water exploration system can greatly improve the mine geophysical exploration efficiency, accurately detect the water-bearing distribution of the rock stratum at any position and at any depth near the working face, divide the poor and water-rich area of the floor rock strata, and evaluate the safety of the working surface. It can realize the full area, no blind area and three-dimensional detection of water-bearing capacity on the bottom plate of the working face.
  • [1]
    蓝航,陈东科,毛德兵.我国煤矿深部开采现状及灾害防治分析[J].煤炭科学技术,2016,44(1):39-46.

    LAN Hang, CHEN Dongke, MAO Deming. Current status of deep mining and disaster prevention in China[J]. Coal Science and Technology, 2016, 44(1): 39-46.
    [2]
    张党育.深部开采矿井水害区域治理关键技术研究及发展[J].煤炭科学技术,2017,45(8):8-18.

    ZHANG Dangyu. Research and development on key technology of mine water disaster regional control in deep mine[J]. Coal Science and Technology, 2017, 45(8): 8-18.
    [3]
    张泓,夏宇靖,张群,等.深层煤矿床开采地质条件及其综合探测—现状与问题[J].煤田地质与勘探,2009,37(1):1-11.

    ZHANG Hong, XIA Yujing, ZHANG Qun, et al. Coal-mining geological conditions and explorations of deep coal deposits:status and problems[J]. Coal Geology & Exploration, 2009, 37(1): 1-11.
    [4]
    董书宁.煤矿安全高效生产地质保障的新技术新装备[J].中国煤炭,2020,46(9):15-23.

    DONG Shuning. New technology and equipment of geological guarantee for safe and efficient production in coal mine[J]. China Coal, 2020, 46(9): 15-23.
    [5]
    王少飞.矿井物探技术应用现状与发展展望分析[J].江西化工,2020(2):307-308.
    [6]
    张军,王勇,秦鸿刚,等.矿井音频电透视在矿井工作面探测中的应用[J].工程地球物理学报,2013,10(4):551-554.

    ZHANG Jun, WANG Yong, QIN Honggang,et al. The application of audio frequency electric perspective to detection of coal mine work face[J]. Chinese Journal of Engineering Geophysics, 2013, 10(4): 551-554.
    [7]
    李科强,焦学军,田磊,等.高密度电阻率法在铝土矿勘查中的电性分析[J].能源与环保,2020,42(6):86.

    LI Keqiang, JIAO Xuejun, TIAN Lei, et al. Electrical analysis of high-density resistivity method in bauxite exploration[J]. China Energy and Environmental Protection, 2020, 42(6): 86.
    [8]
    曾方禄,王永胜,张小鹤,等.矿井音频电透视及其应用[J].煤田地质与勘探,1997,25(6):54-58.

    ZENG Fanglu, WANG Yongsheng, ZHANG Xiaohe, et al. Mine voice frequency electric perspective technique and its application[J]. Coal Geology and Exploration, 1997, 25(6): 54-58.
    [9]
    郭鹏飞,谢雄刚,白雯,等.音频电透视法在防治矿井水患中的应用[J].工业安全与环保,2018,44(4):34.

    GUO Pengfei, XIE Xionggang, BAI Wen, et al. Application of audio frequency electric perspective method in detecting mine flooding zones[J]. Industrial Safety and Dust Control, 2008, 44(4): 34.
    [10]
    严加永,孟贵祥,吕庆田,等.高密度电法的进展与展望[J].物探与化探,2012,36(4):576-584.

    YAN Jiayong, MENG Guixiang, LU Qingtian, et al. The progress and prospect of the electrical resistivity imaging survey[J]. Geophysical and Geochemical Exploration, 2012, 36(4): 576-584.
  • Related Articles

    [1]GAO Yuan, LI Naiwen, NIU Lixia. Study on visual attention effect of safety signs under light and cognitive characteristics[J]. Safety in Coal Mines, 2024, 55(4): 251-256. DOI: 10.13347/j.cnki.mkaq.20231255
    [2]LI Wenfeng, TUO Lulu, LI Bo, DING Shuhao, CHANG Huili. A mine intrinsically safe watch design[J]. Safety in Coal Mines, 2024, 55(4): 226-230. DOI: 10.13347/j.cnki.mkaq.20230944
    [3]YANG Yage, SUN Linhui, DAI Zong, WU Shenglin. Research on visual attention effect of characteristics of coal mine safety signs[J]. Safety in Coal Mines, 2022, 53(3): 249-252.
    [4]TAN Zhanglu, WU Qi, XIAO Yixuan. Study on Visualization Options of Coal Mine Ventilation Safety Information[J]. Safety in Coal Mines, 2018, 49(12): 86-89.
    [5]HU Yuchao. Application of Voxler in Visualization of Borehole Trajectory[J]. Safety in Coal Mines, 2018, 49(4): 99-102.
    [6]TAN Zhanglu, LI Guangda. Factor Analysis on Visual Management of Coal Mine Safety[J]. Safety in Coal Mines, 2016, 47(10): 238-241.
    [7]AN Yu, LI Dan. Study on Safety Signs of Coal Tunnel Heading Face[J]. Safety in Coal Mines, 2016, 47(8): 251-254.
    [8]QIAN Xu, HAN Ying, WANG Hui, WANG Jianyu. Design of Life Signs Detector Applied in Coal Mine Based on ZigBee[J]. Safety in Coal Mines, 2015, 46(2): 106-108.
    [9]WANG Peng, WEN Liang, WU Xian-li. Vital Signs Monitoring Technology for Coal Mine Rescue Team[J]. Safety in Coal Mines, 2013, 44(11): 98-99,103.
    [10]TAN Zhang-lu, ZHANG Chang-lu. Research on the Visual Safety Management of Coal Mines[J]. Safety in Coal Mines, 2013, 44(9): 232-234.
  • Cited by

    Periodical cited type(21)

    1. 郭建磊,李雄伟,侯彦威,刘修刚. 综合探测方法在煤矸石场自燃区探测中的应用. 煤炭工程. 2025(01): 177-181 .
    2. 李素媛. 4种堆积方式治理燕子山煤矿自燃矸石山的应用研究. 能源与节能. 2024(02): 229-233 .
    3. 王振兴,王洋,韩东洋,任晓伟. 煤矸石放热危险性与微观基团相关性研究. 煤矿安全. 2024(02): 107-115 . 本站查看
    4. 李绪萍,李直,任晓鹏,张靖,刘艳青,周琛鸿. 煤矸石低温氧化官能团演化与气体相关性分析. 煤矿安全. 2024(06): 91-99 . 本站查看
    5. 张守成,郭正萌,赵永亮,王汝振,董庆亚,杨凯. 煤矸石堆场自燃危险性综合评价研究与应用——以抚顺市西舍场为例. 山东国土资源. 2024(10): 43-52 .
    6. 安全,宋慧平,吴海滨,程芳琴,刘春晖,狄子琛,赵仲鹤. 粉煤灰基注浆灭火材料防火性能研究. 山西大学学报(自然科学版). 2024(06): 1297-1306 .
    7. 高彤,张永波,李荣,张伟辉,苏继光. 基于热管群的自燃煤矸石山降温试验研究. 煤矿安全. 2023(01): 77-84 . 本站查看
    8. 胡淞博,张源,覃述兵,师鹏. 煤矸石山热棒-热泵联合取热技术研究. 中国资源综合利用. 2023(03): 44-47 .
    9. 张柏林,房淑华,张润旭. 矸石山积温散热与重力热管极限能量的研究. 能源研究与利用. 2023(02): 25-28+42 .
    10. 王文才,马莹鸽,王鹏. 孔隙率和风速对煤矸石山自燃的影响. 陕西煤炭. 2023(03): 13-17 .
    11. 王亚辉,李青青,姚兴柏. 矸石山自燃危险分区及治理措施研究. 陕西煤炭. 2023(04): 101-105+119 .
    12. 王同华,周桂宁,潘发旺,甘治雄. 煤矸石山表面及深部温度场分布特征研究. 能源技术与管理. 2023(04): 172-175 .
    13. 张跃辉,张永波,高彤. 环境温度影响下自燃煤矸石山热管降温技术研究. 矿业安全与环保. 2023(04): 30-35 .
    14. 郑万成,褚廷湘,赵波. 自燃矸石山火源位置确定及注浆防灭火技术应用研究. 能源与环保. 2023(08): 1-5 .
    15. 王文才,王鹏,马莹鸽,李俊鹏. 矸石山矸石散体分布规律及其与渗透特性的关联研究. 安全与环境学报. 2023(11): 3867-3874 .
    16. 王成军,韦志文,严晨. 基于机器视觉技术的分拣机器人研究综述. 科学技术与工程. 2022(03): 893-902 .
    17. 桑树勋,袁亮,刘世奇,韩思杰,郑司建,刘统,周效志,王冉. 碳中和地质技术及其煤炭低碳化应用前瞻. 煤炭学报. 2022(04): 1430-1451 .
    18. 兰华,杨朔鹏. 宁东煤炭基地煤矸石山治理技术现状与问题. 化工设计通讯. 2022(12): 10-12 .
    19. 张柏林,房淑华. 重力热管在猫儿沟露天矿排土场深部积温治理的应用. 能源研究与利用. 2021(01): 44-46+50 .
    20. 王东丽,李佳,张子倩,刘阳,徐源,郭莹莹,吕刚. 风化矸石山不同侵蚀微生境的水热特征. 生态学杂志. 2021(08): 2583-2592 .
    21. 温磊,董红娟,武兵兵,王晨阳. 利用粉煤灰治理矸石山自燃技术研究与应用. 选煤技术. 2021(05): 64-67 .

    Other cited types(12)

Catalog

    Article views (14) PDF downloads (0) Cited by(33)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return