Citation: | WANG Zhenxing, WANG Yang, HAN Dongyang, et al. Study on correlation between exothermic risk of coal gangue and microscopic groups[J]. Safety in Coal Mines, 2024, 55(2): 107−115. DOI: 10.13347/j.cnki.mkaq.20230621 |
In order to explore the exothermic hazard of coal gangue in the process of spontaneous combustion and its correlation with microscopic groups, the microstructure and exothermic characteristics of four kinds of coal gangue(CG1、CG2、CG3、CG4) were tested by infrared spectrum experiment and differential scanning calorimetry experiment; based on the exothermic heat and activation energy, the spontaneous combustion risk coefficient of coal gangue is established, and the correlation between spontaneous combustion risk coefficient and the microscopic groups is determined. The results show that the four kinds of coal gangue all contain substituted benzene, ‒C=C‒, Ar‒CH, ‒CH3, ‒CH2‒, Al‒CH, ‒OH, ‒C‒O‒, ‒C=O and inorganic compound groups, but the content of each group is significantly different. The exothermic process of self‒ignition of coal gangue can be divided into three stages: water evaporation, slow exotherm and combustion, but the duration of the three stages is different for different coal gangue. The activation energy of the four kinds of coal gangue in the endothermic stage is CG1>CG3>CG2>CG4, while that of the coal gangue in the exothermic stage is CG3>CG4>CG2>CG1. The spontaneous combustion risk coefficients of the four kinds of coal gangue are in the order of CG1>CG2>CG4>CG3, and the correlation between microscopic groups and benzene is in the order of ‒C‒O‒ > substituted benzene > ‒OH> ‒CH3> ‒C=C‒> inorganic matter > ‒CH2‒ >Ar‒CH> ‒C=O>Al‒CH> ‒COO‒, the correlation of the first three is greater than 0.85. Therefore, coal gangue with higher levels of ‒C‒O‒, substituted benzene and‒OH has a greater risk of spontaneous combustion.
[1] |
易欣,张敏,邓军. 煤自燃指标体系分析与优选实验研究[J]. 煤矿安全,2023,54(1):85−93.
YI Xin, ZHANG Min, DENG Jun. Analysis and optimization of coal spontaneous combustion index system[J]. Safety in Coal Mines, 2023, 54(1): 85−93.
|
[2] |
张玉涛,张园勃,李亚清,等. 低瓦斯气氛下煤氧化热效应和关键基团演变特性[J]. 中国矿业大学学报,2021,50(4):776−783.
ZHANG Yutao, ZHANG Yuanbo, LI Yaqing, et al. Thermal effect of coal oxidation and evolution properties of key functional groups of coal oxidation at low gas atmospheres[J]. Journal of China University of Mining & Technology, 2021, 50(4): 776−783.
|
[3] |
秦琪焜,方健梅,王根柱,等. 煤矸石与城市污泥混合制备植生基质的试验研究[J]. 煤炭科学技术,2022,50(7):304−314.
QIN Qikun, FANG Jianmei, WANG Genzhu, et al. Experimental study of planting substrate mixed with coal gangue and municipal sludge[J]. Coal Science and Technology, 2022, 50(7): 304−314.
|
[4] |
何骞,肖旸,杨蒙,等. 矸石山自燃防治技术及综合治理模式发展趋势[J]. 煤矿安全,2020,51(8):220−226.
HE Qian, XIAO Yang, YANG Meng, et al. Development trend of prevention and control technology and comprehensive control mode of gangue hill spontaneous combustion[J]. Safety in Coal Mines, 2020, 51(8): 220−226.
|
[5] |
高彤,张永波,柴丽霞,等. 基于热管的自燃煤矸石山降温效应[J]. 科学技术与工程,2022,22(3):981−986.
GAO Tong, ZHANG Yongbo, CHAI Lixia, et al. Cooling effect of spontaneous coal gangue hills based on heat pipe[J]. Science Technology and Engineering, 2022, 22(3): 981−986.
|
[6] |
DENG Jun, LI Bei, XIAO Yang, et al. Combustion properties of coal gangue using thermogravimetry–fourier transform infrared spectroscopy[J]. Applied Thermal Engineering, 2017, 116: 244−252. doi: 10.1016/j.applthermaleng.2017.01.083
|
[7] |
高彤,张永波,李荣,等. 基于热管群的自燃煤矸石山降温试验研究[J]. 煤矿安全,2023,54(1):77−84.
GAO Tong, ZHANG Yongbo, LI Rong, et al. Experimental study on cooling of spontaneous combustion coal ganque dump based on heat pipe group[J]. Safety in Coal Mines, 2023, 54(1): 77−84.
|
[8] |
刘玥,徐青云. 乌兰木伦矿区煤矸石元素特征及热解特性分析[J]. 煤炭工程,2016,48(8):128−131.
LIU Yue, XU Qingyun. Characteristic analysis of chemical elements and pyrolysis of coal gangue in Ulan Mulun mining area[J]. Coal Engineering, 2016, 48(8): 128−131.
|
[9] |
杨凯,文雪琴. 自燃后煤矸石的XRD定性分析[J]. 煤炭技术,2017,36(1):313−314.
YANG Kai, WEN Xueqin. XRD qualitative analysis of spontaneous combustion of coal gangue[J]. Coal Technology, 2017, 36(1): 313−314.
|
[10] |
李松,万洁. 煤矸石自燃机理及其防治技术研究[J]. 环境科学与技术,2005,28(2):82−84.
LI Song, WAN Jie. Coal‒waste rocks: spontaneous combustion mechanism and its control[J]. Environmental Science & Technology, 2005, 28(2): 82−84.
|
[11] |
马鹏传. 煤矸石的氧化自燃特性及防治研究[D]. 太原:太原理工大学,2021.
|
[12] |
位蓓蕾,胡振琪,王晓军,等. 煤矸石山的自燃规律与综合治理工程措施研究[J]. 矿业安全与环保,2016,43(1):92−95.
WEI Beilei, HU Zhenqi, WANG Xiaojun, et al. Study on spontaneous combustion rule of gangue dump and its comprehensive control measures[J]. Mining Safety & Environmental Protection, 2016, 43(1): 92−95.
|
[13] |
王思栋,刘英忠,徐超. 煤矸石自燃氧化过程中自由基变化规律研究[J]. 工矿自动化,2020,46(4):34−37.
WANG Sidong, LIU Yingzhong, XU Chao. Research on free radical variation law in spontaneous combustion and oxidation process of coal gangue[J]. Industry and Mine Automation, 2020, 46(4): 34−37.
|
[14] |
杨娜,张永波,牛金荣. 荫营煤矿自燃矸石山温度场分布及深部温度拟合[J]. 矿业安全与环保,2021,48(4):23−27.
YANG Na, ZHANG Yongbo, NIU Jinrong. Temperature field distribution and deep temperature fitting of spontaneous combustion gangue dump in Yinying Coal Mine[J]. Mining Safety & Environmental Protection, 2021, 48(4): 23−27.
|
[15] |
邢纪伟,邬剑明,王俊峰,等. 用粉煤灰防治煤矸石自燃灾害的试验研究[J]. 中国安全科学学报,2015,25(5):3−7.
XING Jiwei, WU Jianming, WANG Junfeng, et al. Experimental study on preventing gangue spontaneous combustion disaster using fly ash[J]. China Safety Science Journal, 2015, 25(5): 3−7.
|
[16] |
文宇,鄢云龙,罗康成. 远程煤矿露天开采排土场煤矸石自燃灭火技术方案[J]. 煤炭技术,2018,37(1):152−154.
WEN Yu, YAN Yunlong, LUO Kangcheng. Extinguishing measures for spontaneous combustion of coal gangue in dump of remote coal mine in open pit mining[J]. Coal Technology, 2018, 37(1): 152−154.
|
[17] |
郝盼云,孟艳军,曾凡桂,等. 红外光谱定量研究不同煤阶煤的化学结构[J]. 光谱学与光谱分析,2020,40(3):787−792.
HAO Panyun, MENG Yanjun, ZENG Fangui, et al. Quantitative study of chemical structures of different rank coals based on infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 787−792.
|
[18] |
王福生,高湛翔,高东. 基于差减图谱分析的煤低温氧化活性基团转化规律[J]. 煤矿安全,2022,53(3):43−49.
WANG Fusheng, GAO Zhanxiang, GAO Dong. Transformation law of coal low-temperature oxidation active groups based on subtraction map[J]. Safety in Coal Mines, 2022, 53(3): 43−49.
|
[19] |
张明乾,李宗翔,杨志斌,等. 断层构造对煤结构及氧化自燃特性的影响[J]. 煤炭学报,2023,48(3):1246−1254.
ZHANG Mingqian, LI Zongxiang, YANG Zhibin, et al. Effect of fault structure on the structure and oxidative spontaneous combustion characteristics of coal[J]. Journal of China Coal Society, 2023, 48(3): 1246−1254.
|
[20] |
张斌,刘建忠,赵卫东,等. 褐煤自燃特性热重实验及动力学分析[J]. 热力发电,2014,43(6):71−76.
ZHANG Bin, LIU Jianzhong, ZHAO Weidong, et al. Thermogravimetric experiments and dynamic analysis on spontaneous combustion characteristics of lignite[J]. Thermal Power Generation, 2014, 43(6): 71−76.
|
[21] |
唐诗. 关于利用DSC曲线计算煤的燃烧反应动力学的研究[J]. 科技创新与应用,2017(13):62.
|
[22] |
陈晓坤,王晨熹,翟小伟. 基于热爆炸理论的煤燃点确定及动力学分析[J]. 中国安全科学学报,2022,32(2):59−65.
CHEN Xiaokun, WANG Chenxi, ZHAI Xiaowei. Determination and kinetics analysis of coal ignition point based on thermal explosion method[J]. China Safety Science Journal, 2022, 32(2): 59−65.
|
[23] |
付晶,赵凯,张海洋,等. 灰色关联法在煤自燃标志气体优选中的应用[J]. 煤矿安全,2019,50(5):181−185. doi: 10.13347/j.cnki.mkaq.2019.05.045
FU Jing, ZHAO Kai, ZHANG Haiyang, et al. Application of grey correlation in optimization of indicator gas for coal spontaneous combustion[J]. Safety in Coal Mines, 2019, 50(5): 181−185. doi: 10.13347/j.cnki.mkaq.2019.05.045
|
[1] | LIU Boxiong, MA Shangquan, ZHANG Chao, ZHU Jianfang. Study on the influence of particle size and heating rate on characteristic temperature and activation energy of coal oxidation[J]. Safety in Coal Mines, 2023, 54(11): 77-83. DOI: 10.13347/j.cnki.mkaq.2023.11.013 |
[2] | ZHANG Wenhao, YU Tao. Thermal effect and kinetic analysis of secondary spontaneous combustion of pre-oxidized coal[J]. Safety in Coal Mines, 2022, 53(8): 42-49. |
[3] | PANG Pan, XIAO Yang, LIU Kunhua, HUANG Chuanliang, LU Xiaodong. Study on Thermal Loss and Heat Transfer Characteristics of Oxidized Spontaneous Combustion of Coal-based Activated Carbon[J]. Safety in Coal Mines, 2020, 51(12): 27-33. |
[4] | BAO Ran, LI Kai. Simulation Study on Effect of Fault Throw on Activation of Inverse Fault[J]. Safety in Coal Mines, 2017, 48(5): 46-48,52. |
[5] | ZHU Yanqiu, YANG Li. Experimental Study on Laws of Fault Activation Induced by Mining[J]. Safety in Coal Mines, 2017, 48(4): 29-31,35. |
[6] | DENG Jun, YANG Junyi, ZHANG Yutao, LI Yaqing. Thermogravimetric - infrared Experimental Research on Coal Spontaneous Combustion Under the Condition of Lean Oxygen[J]. Safety in Coal Mines, 2017, 48(4): 24-28. |
[7] | SUN Fulong, FAN Jiafeng, CHEN Yang. Study on Spontaneous Combustion Tendency of Coal Based on Activation of Energy[J]. Safety in Coal Mines, 2016, 47(12): 184-186,190. |
[8] | WANG Lanyun, XU Yongliang, CHU Tingxiang, WANG Xiaoyan. Effect of Ionic Liquids on Coal's Activation Energy in Low Temperature Oxidation[J]. Safety in Coal Mines, 2014, 45(5): 148-150,154. |
[9] | ZHU Hongqing, SHEN Jing, WANG Haiyan, CHANG Mingran, HU Ruili. Thermo Gravimetry Experiment Study on Relationship Between Oxygen Concentration and Characteristics of Coal Oxidation[J]. Safety in Coal Mines, 2014, 45(5): 16-19. |
[10] | LI Xiang-yang, LIU Jin-liang, ZHAO Jing-li, LI You-jun. Filling Gelled Material Activation Technology of Coal Gangue[J]. Safety in Coal Mines, 2013, 44(4): 99-102. |