• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
GAO Tong, ZHANG Yongbo, LI Rong, ZHANG Weihui, SU Jiguang. Experimental study on cooling of spontaneous combustion coal gangue dump based on heat pipe group[J]. Safety in Coal Mines, 2023, 54(1): 77-84.
Citation: GAO Tong, ZHANG Yongbo, LI Rong, ZHANG Weihui, SU Jiguang. Experimental study on cooling of spontaneous combustion coal gangue dump based on heat pipe group[J]. Safety in Coal Mines, 2023, 54(1): 77-84.

Experimental study on cooling of spontaneous combustion coal gangue dump based on heat pipe group

More Information
  • Published Date: January 19, 2023
  • In order to prevent air and soil pollution caused by spontaneous combustion of gangue dump, avoid landslide, explosion and other disasters, and fundamentally solve the problem of spontaneous combustion of gangue dump, based on the principle of heat pipe phase change heat transfer, the effect of group tube spacing and tube type combination on the cooling effect was studied through the field group tube test of gangue dump. The results show that the group pipe has a significant cooling effect on spontaneous combustion coal gangue dump. Within 100 days, the maximum drop value of monitoring site is 91 ℃, and the average drop value is 0.91 ℃/day. The arrangement of group pipes with spacing of 4 m in the high temperature area can control the spontaneous combustion temperature rise and keep the temperature falling steadily. The arrangement of group tubes with spacing of 5 m in the middle temperature zone can inhibit the oxidation temperature rise, and it is necessary to appropriately change the arrangement spacing in some higher temperature zones to achieve more efficient cooling. Group tubes with spacing of 6 m in the low-temperature zone can prevent temperature rise and spontaneous combustion in the low-temperature zone. The location of heat pipe evaporation section is the best cooling depth of gangue dump, and the alternate arrangement of long and short pipes can avoid the heat transfer process caused by the shallow layer temperature rise, which is conducive to the comprehensive temperature control and fire extinguishing of gangue dump.
  • [1]
    LI Bei, WANG Jiahua, BI Mingshu, et al. Experimental study of thermophysical properties of coal gangue at initial stage of spontaneous combustion[J]. Journal of Hazardous Materials, 2020, 400: 123251.
    [2]
    QUEROL X, IZQUIERDO M, MONFORT E, et al. Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China[J]. International Journal of Coal Geology, 2008, 75(2): 93 -104.
    [3]
    毛俊,马玉学,马学东,等.宁东镇煤矸石堆放场区土壤综合评价[J].环境科学与技术,2021,44(S1):114-119.

    MAO Jun, MA Yuxue, MA Xuedong, et al. Comprehensive soil evaluation of coal gangue dump area in Ningdong Town[J]. Environmental Science & Technology, 2021, 44(S1): 114-119.
    [4]
    李静,温鹏飞,何振嘉.煤矸石的危害性及综合利用的研究进展[J].煤矿机械,2017,38(11):128-130.

    LI Jing, WEN Pengfei, HE Zhenjia. Research progress harmfulness and comprehensive utilization of coal gangue[J]. Coal Mine Machinery, 2017, 38(11): 128-130.
    [5]
    潘荣锟,余明高.自燃煤矸石山爆炸的危害及治理技术[J].河南理工大学学报(自然科学版),2007,26(5):484-488.

    PAN Rongkun, YU Minggao. Harm of spontaneous combustion gangue dump explosion and its counter techniques[J]. Journal of Henan Polytechnic University(Natural Science), 2007, 26(5): 484-488.
    [6]
    高文先.阳泉市煤矸石山治理效果调查与分析[J].科技信息,2009(21):742.
    [7]
    张小翌,王德明,杨雪花,等.古书院矿郭山排矸场火区快速治理技术[J].煤矿安全,2019,50(7):96-99.

    ZHANG Xiaoyi, WANG Deming, YANG Xuehua, et al. Rapid management technology of fire area of Guoshan gangue dump in Gushuyuan Mine[J]. Safety in Coal Mines, 2019, 50(7): 96-99.
    [8]
    TANG Y, WANG H. Development of a novel bentonite acrylamide superabsorbent hydrogel for extinguishing gangue fire hazard[J]. Powder Technology, 2017: S0032 591017307830.
    [9]
    何骞,肖旸,杨蒙,等.矸石山自燃防治技术及综合治理模式发展趋势[J].煤矿安全,2020,51(8):220-226.

    HE Qian, XIAO Yang, YANG Meng, et al. Development trend of prevention and control technology and comprehensive control mode of gangue hill spontaneous combustion[J]. Safety in Coal Mines, 2020, 51(8): 220-226.
    [10]
    REAY D, HARVEY A. The role of heat pipes in intensified unit operations[J]. Applied Thermal Engineering, 2013, 57: 147-153.
    [11]
    李文军,肖星宇,周圣辉,等.高温热管的研究进展及应用[J].现代化工,2020,40(6):15-18.

    LI Wenjun, XIAO Xingyu, ZHOU Shenghui, et al. Research progress on high temperature heat pipes and application[J]. Modern Chemical Industry, 2020, 40(6): 15-18.
    [12]
    徐先满,周蕾玲.热管在青藏铁路冻土工程中的应用[J].石油化工设备,2016,45(S1):41.

    XU Xianman, ZHOU Leiling. Heat pipe technology used in permafrost of Qinghai tibet railway engineering[J]. Petro-Chemical Equipment, 2016, 45(S1): 41.
    [13]
    赫青山.热管砂轮高效磨削加工技术研究[D].南京:南京航空航天大学,2013.
    [14]
    党逸峰,张亚平,屈瑞,等.热管实现煤堆深部热转移的实验研究[J].煤炭技术,2016,35(12):214-215.

    DANG Yifeng, ZHANG Yaping, QU Rui, et al. Experimental research of deep heat transfer using heat pipe for coal storage pile[J]. Coal Technology, 2016, 35(12): 214-215.
    [15]
    张亚平,王建国,姬长发,等.热管抑制煤自燃的降温效应分析[J].煤炭工程,2017,49(2):100-102.

    ZHANG Yaping, WANG Jianguo, JI Changfa, et al. Cooling effect analysis of heat pipe suppressing coal spontaneous combustion[J]. Coal Engineering, 2017, 49(2): 100-102.
    [16]
    王力伟.用于煤堆降温的热管移热能力影响因素研究[D].西安:西安科技大学,2017.
    [17]
    吴鹏.热棒布置参数与环境风速对煤堆移热实验研究[D].西安:西安建筑科技大学,2018.
    [18]
    邓军,李贝,马砺.用热棒技术强化煤堆降温幅度试验[J].中国安全科学学报,2015,25(6):62-67.

    DENG Jun, LI Bei, MA Li. Influence of heat pipes on temperature distribution in coal storage pile[J]. China Safety Science Journal, 2015, 25(6): 62-67.
    [19]
    LI Bei, DENG Jun, XIAO Yang, et al. Heat transfer capacity of heat pipes: An application in coalfield wildfire in China[J]. Heat and Mass Transfer, 2018, 54(6): 1755-1766.
    [20]
    冯乾,王景刚,李敏婕,等.热管治理煤矸石山自燃技术的试验研究[J].煤炭与化工,2019,42(8):110-114.

    FENG Qian, WANG Jinggang, LI Minjie, et al. Experimental study on heat pipe treatment of coal ganguemountain spontaneous combustion technology[J]. Coal and Chemical Industry, 2019, 42(8): 110-114.
    [21]
    王建国,郑晨光,王延秋.冷凝段翅片类型对热管抑制煤自燃的降温效应影响研究[J].矿业安全与环保.2020,47(5):13-17.

    WANG Jianguo, ZHENG Chenguang, WANG Yanqiu. Study on the influence of fin types in condensation section on the cooling effect of the heat pipe to suppress coal spontaneous combustion[J]. Mining Safety & Environmental Protection, 2020, 47(5): 13-17.
    [22]
    SRIMUANG W, AMATACHAYA P. A review of the applications of heat pipe heat exchangers for heat recovery[J]. Renewable and Sustainable Energy Reviews, 2012, 16(6): 4303-4315.
    [23]
    位蓓蕾,胡振琪,王晓军,等.煤矸石山的自燃规律与综合治理工程措施研究[J].矿业安全与环保,2016, 43(1):92-95.

    WEI Beilei, HU Zhenqi, WANG Xiaojun, et al. Study on spontaneous combustion rule of gangue dump and its comprehensive control measures[J]. Mining Safety & Evironmental Protection, 2016, 43(1): 92-95.
    [24]
    ZHANG Yuanyuan, GUO Yanxia, CHENG Fangqin, et al. Investigation of combustion characteristics and kinetics of coal gangue with different feedstock properties by thermogravimetric analysis[J]. Thermochimica Acta, 2015, 614: 137-148.
    [25]
    高彤,张永波,柴丽霞,等.基于热管的自燃煤矸石山降温效应[J].科学技术与工程,2022,22(3):981-986.

    GAO Tong, ZHANG Yongbo, CHAI Lixia, et al. Cooling effect of spontaneous coal gangue hills based on heat pipe[J]. Science Technology and Engineering, 2022, 22(3): 981-986.
  • Related Articles

    [1]YANG Xiaoyu, WANG Yiliang. Numerical simulation research on arrangement of spray nozzles outside fully mechanized excavation face[J]. Safety in Coal Mines, 2023, 54(12): 40-47. DOI: 10.13347/j.cnki.mkaq.2023.12.007
    [2]YANG Hongmin, XING Shutuan, CHEN Liwei, CHENG Qiang. Methods of Non-equidistant Holes Arrangement and Effect Evaluation in Gas Drainage from Coal Seam[J]. Safety in Coal Mines, 2018, 49(2): 147-150.
    [3]TIAN Baizheng, YU Guisheng, TANG Hui. Comprehensive Control Technology of Coal Spontaneous Combustion in Very Close Distance and Easy Spontaneous Combustion Seam[J]. Safety in Coal Mines, 2018, 49(1): 97-99,103.
    [4]FAN Zhigang, WANG Huiyue, QU Xiaoming, REN Zhongjiu, ZHAO Zhiyan. Similar Simulation Experiment of Stagger Arrangement Roadway Layout in Three-soft Thick Coal Seam[J]. Safety in Coal Mines, 2018, 49(1): 65-68,72.
    [5]ZHAO Bin, WANG Meng, TAO Guangmei, ZHANG Jiangli, SI Chao. Effect of Arrangement Forms on Advance Pre-grouting in Working Face[J]. Safety in Coal Mines, 2017, 48(12): 207-210.
    [6]WEI Weijie, ZHANG Jinwang. Research Status and Prospect of Safe Mining in Close Distance Coal Seams[J]. Safety in Coal Mines, 2017, 48(10): 174-177.
    [7]GAO Yan, CHANG Jun, FANG Jian, LYU Jianzhou. Study on Arrangement of Work Line in Large Open-pit Coal Mine[J]. Safety in Coal Mines, 2014, 45(9): 51-54.
    [8]DU Feng. Research on Reasonable Location of Outward Staggered Arrangement at Simultaneously Mining Working Face Crossheading in Close Distance Coal Seams[J]. Safety in Coal Mines, 2014, 45(8): 53-56.
    [9]LI Hongxing, DING Guoli, ZHANG Xiaoqiang, LIU Yuedong. Reasonable Malposition for Mining Roadway Outward Staggered Arrangement in Very Close Distance Coal Seam[J]. Safety in Coal Mines, 2014, 45(7): 41-44.
    [10]JI Wen-tao, GAO Ming-zhong, ZHU Qiang, REN Fei, SUN Chao, LU Feng. The Numerical Analysis of Roadway Before and After Support Under Different Arrangement[J]. Safety in Coal Mines, 2013, 44(4): 205-207.
  • Cited by

    Periodical cited type(8)

    1. 周玮鸿,杜胜蛟,周袁,叶辰,楚亚培. 高温作用下砂岩孔隙结构损伤演化规律研究. 金属矿山. 2025(02): 75-80 .
    2. 张波,陈博源,马立涛,吴鹏,刘成,陈建奇,李洋冰,姜洋. 煤岩氦气孔隙度测量关键参数优化. 非常规油气. 2025(02): 25-32 .
    3. 谭彩,潘展钊,袁明道,黄锦林,史永胜,张旭辉. 基于计算机断层扫描的浆砌石真实三维孔隙网络模型及其渗流数值模拟. 水电能源科学. 2024(02): 89-93 .
    4. 金霏阳,陈学习,高泽帅. 不同变质程度煤体微孔多重分形特征研究. 煤矿安全. 2024(03): 9-17 . 本站查看
    5. 孙璐,周国晓,荆雪媛,张君莹,吴陈君. 鄂尔多斯盆地中东部本溪组深部煤岩分形特征与成储机理. 西安石油大学学报(自然科学版). 2024(03): 1-11 .
    6. 关欣,刘育伟,任重阳,汤迅. 基于CT三维重构的无烟煤孔隙结构及连通性特征对比表征. 非常规油气. 2023(01): 69-76 .
    7. 孙丕臣,王海超. 东营凹陷博兴洼陷沙河街组页岩孔隙特征研究. 当代化工研究. 2023(09): 32-34 .
    8. 卢宏伟,徐宏杰,杨祎超,丁海,祝月,苟博明,戴王杰. 煤储层孔隙结构与甲烷吸附能量变化的非均质性特征. 科学技术与工程. 2023(30): 12817-12826 .

    Other cited types(5)

Catalog

    Article views (23) PDF downloads (16) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return