• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
ZHANG Yi, CHEN Dong, ZHANG Hui, LIU Mengmeng, LIU Fu, WEI Kai. Study on the influence of drilling fluid filtration on stability of coalbed wellbore[J]. Safety in Coal Mines, 2021, 52(4): 78-84.
Citation: ZHANG Yi, CHEN Dong, ZHANG Hui, LIU Mengmeng, LIU Fu, WEI Kai. Study on the influence of drilling fluid filtration on stability of coalbed wellbore[J]. Safety in Coal Mines, 2021, 52(4): 78-84.

Study on the influence of drilling fluid filtration on stability of coalbed wellbore

More Information
  • Published Date: April 19, 2021
  • Coal rock has many porous characteristics, such as cleavage, pore and so on. Drilling fluid is easy to invade into coal bed rock, which is easy to cause wellbore instability. Considering the physical effect of drilling fluid loss on coal rock, a fluid-solid coupling model for evaluating the stability of coal wellbore is established by using Mohr-Coulomb plastic model as the failure criterion of coal bed rock. Through numerical simulation, the effects of drilling fluid loss on the stress field and seepage field of coal rock are compared and analyzed. The results show that the extrusion of non-uniform in-situ stress makes drilling fluid easy to leak along the direction of maximum horizontal in-situ stress, and the loss of drilling fluid will lead to the increase of pore pressure, which will change the stress of coal rock surrounding the wellbore. The maximum stress field shifts from the direction of maximum horizontal in-situ stress to the direction of minimum horizontal in-situ stress, and the maximum stress increases from 15 MPa to 17 MPa, which is not conducive to the stability of coal rock. Under the condition of positive pressure difference, drilling fluid will invade into the pore of coal rock, increase the pore pressure, cause the stress of coal and rock to increase, and cause wellbore instability. Therefore, the influence of drilling fluid pressure supporting wellbore and pore pressurization to damage wellbore should be considered comprehensively in the design of drilling fluid density.
  • [1]
    Akbarpour M, and M Abdideh. Wellbore stability analysis based on geomechanical modeling using finite element method[J]. Modeling Earth Systems and Environment, 2020, 6(3/4): 617-22.
    [2]
    Aslannezhad M, Keshavarz A, Kalantariasl A. Evaluation of mechanical, chemical, and thermal effects on wellbore stability using different rock failure criteria [J]. Journal of Natural Gas Science and Engineering, 2020, 78(1): 1-16.
    [3]
    张遂安,袁玉,孟凡圆.我国煤层气开发技术进展 [J]. 煤炭科学技术,2016,44(5):1-5.

    ZHANG Suian, YUAN Yu, MENG Fanguo. Progress on coalbed methoane development technology in China [J]. Coal Science and Technology, 2016, 44 (5): 1-5.
    [4]
    Zheng L H, Su G D, Li Z H, et al. The wellbore instability control mechanism of fuzzy ball drilling fluids for coal bed methane wells via bonding formation[J]. Journal of Natural Gas Science and Engineering, 2018, 56: 107-120.
    [5]
    申瑞臣,屈平,杨恒林.煤层井壁稳定技术研究进展与发展趋势[J].石油钻探技术,2010,38(3):1-7.

    SHEN Ruichen, QU Ping, YANG Henglin. Advancement and development of coal bed wellbore stability technology[J]. Petroleum Drilling Techniques, 2010, 38(3): 1-7.
    [6]
    魏凯,管志川,廖华林,等.井壁失稳风险评价方法 [J]. 中国石油大学学报(自然科学版),2013,37(2):62-66.

    WEI Kai, GUAN Zhichuan, LIAO Hualin, et cal. Assessment method of borehole instability risk[J]. Journal of China University of Petroleum, 2013, 37(2): 62-66.
    [7]
    冯立杰,江涛,岳俊举,等.煤层气开采钻井工程关键影响因素识别研究[J].煤矿安全,2018,49(12):177.

    FENG Lijie, JIANG Tao, YUE Junju, et cl. Identification of key influencing factors of CBM drilling engineering[J]. Safety in Coal Mines, 2018, 49 (12): 177-180.
    [8]
    Gentzis T, Deisman N, Chalaturnyk R J. Effect of drilling fluids on coal permeability: Impact on horizontal wellbore stability[J]. International Journal of Coal Geology, 2009, 78(3): 177-191.
    [9]
    屈平,申瑞臣.煤层气钻井井壁稳定机理及钻井液密度窗口的确定[J].天然气工业,2010,30(10):64-68.

    QU Ping, SHEN Ruichen. Mechanism of wellbore stability and determination of drilling fluid density window in coalbed methane drilling[J]. Natural Gas Industry, 2010, 30(10): 64-68.
    [10]
    Akbarpour M, Abdideh M. Wellbore stability analysis based on geomechanical modeling using finite element method[J]. Modeling Earth Systems and Environment, 2020, 6(3/4): 617-622.
    [11]
    邓虎,孟英峰.泥页岩稳定性的化学与力学耦合研究综述[J].石油勘探与开发,2003,30(1):109-111.

    DENG Hu, MENG Yingfeng. A discussion on shale stability coupling with mechanics and chemistry[J]. Petroleum Exploration and Development, 2003, 30(1): 109-111.
    [12]
    孙正财,刘向君,梁利喜,等.煤层气井割理煤岩井壁稳定性影响因素分析[J].煤炭科学技术,2018,46(4):117-122.

    SUN Zhengcai, LIU Xiangjun, LIANG Lixi, et al. Analysis on impact factors of borehole wall stability of coalbed methane well[J]. Coal Science and Technology, 2018, 46(4): 117-122.
    [13]
    何世明,陈俞霖,马德新,等.井壁稳定多场耦合分析研究进展[J].西南石油大学学报(自然科学版),2017(2):81-92.

    HE Shiming, CHEN Yulin, MA Dexin, et al. A review on wellbore stability with multi-field coupling analysis [J]. Journal of Southwest Petroleum (Science & Technology Edition), 2017(2):81-92.
    [14]
    和志浩.煤岩井壁稳定性的岩石力学基础研究[D]. 成都:西南石油大学,2013:80-90.
    [15]
    徐献芝,李培超,李传亮.多孔介质有效应力原理研究[J].力学与实践,2001,23(4):42-45.

    XU Xianzhi, LI Peichao, LI Chuanliang. Principle of effective stress based on porous medium[J]. Mechanics in Engineering, 2001, 23(4): 42-45.
    [16]
    李培超.多孔介质流-固耦合渗流数学模型研究[J].岩石力学与工程学报,2004,23(16):2842-2842.

    LI Peichao. Mathematical models of flow-deformation coupling for porous media[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(16): 2842-2842.
    [17]
    刘鸿文.材料力学(第五版)[M].北京:高等教育出版社,2010:50-56.
    [18]
    谢玉华,赵坤,刘见宝,等.新景矿3号煤层渗透率对有效应力敏感性实验分析[J].煤矿安全,2020,51(4):36-41.

    XIE Yuhua, ZHAO Kun, LIU Jianbao, et cl. Experimental analysis of sensitivity of permeability to effective stress in No.3 coal seam of Xinjing Coal Mine [J]. Safety in Coal Mines, 2020, 51(4): 36-41.
    [19]
    Louis C. Rock hydraulics in rock mechanics[M]. New York: Springer Verlag, 1974: 299-387.
    [20]
    魏凯,马金山,管志川,等.井壁失稳区域确定方法及影响因素分析[J].力学与实践,2014,36(1):54-58.

    WEI Kai, MA Jinshan, GUAN Zhichuan, et al. Determination of wellbore instability area and analysis of influencing factors[J]. Mechanics in Engineering, 2014, 36(1): 54-58.
    [21]
    张丹丹,冯雨实,李永臣,等.基于有限元软件的煤层气水平井井壁稳定数值模拟[J].煤矿安全,2018,49(3):144-147.

    ZHANG Dandan, FENG Yushi, LI Yongchen, et cl. Numerical simulation of wellbore stability for CBM horizontal well by finite element software[J]. Safety in Coal Mines, 2018, 49 (3): 144-147.
    [22]
    陈勉,金衍,张光清.石油工程岩石力学[M].北京:科学出版社,2008:80-83.
    [23]
    韩帅,孙达,金珠鹏,等.不同屈服准则下回采巷道区段煤柱的合理宽度[J].煤矿安全,2018,49(2):189.

    HAN Shuai, SUN Da, JIN Zhupeng, et cl. Reasonable width of sectional coal pillar of mining roadway under different yield criterions[J]. Safety in Coal Mines, 2018, 49(2): 189-193.
  • Related Articles

    [1]YAO Wenjun, DENG Cunbao, FAN Nan, SHEN Wenmai, ZHANG Linfeng, ZHANG Pengli. Numerical simulation of fluid-solid-thermal coupling for CO2 injection enhanced mining in deep coal seams[J]. Safety in Coal Mines, 2024, 55(7): 31-38. DOI: 10.13347/j.cnki.mkaq.20230293
    [2]FAN Yongpeng, HUO Zhonggang, WANG Yong. Numerical simulation of CO2-ECBM based on fluid-solid-thermal coupled model[J]. Safety in Coal Mines, 2022, 53(2): 162-169.
    [3]YANG Changde, WANG Peng, MAO Jinfeng, LI Jinbo, ZHANG Haidong. Numerical Simulation of Triaxial Compression Experiment of Rock Mass Under Thermal-Fluid-Solid Coupling[J]. Safety in Coal Mines, 2020, 51(5): 50-55.
    [4]FENG Yushi, LIANG Yongchang. Numerical Analysis of Fluid-solid-heat Coupling of Surrounding Rock Around Coalbed Methane Horizontal Wells[J]. Safety in Coal Mines, 2018, 49(1): 206-209.
    [5]ZHANG Bei. Numerical Simulation on Gas-liquid-solid Coupling Mechanism of Gas Drainage in Water-bearing Coal Seam[J]. Safety in Coal Mines, 2017, 48(5): 180-183.
    [6]LI Ke. Fluid-solid Coupling Analysis of Coal Seam Floor Failure Features[J]. Safety in Coal Mines, 2017, 48(3): 171-174.
    [7]NI Hongyang, PU Hai, LI Yun. Simulation Study on Seepage Failure of Sand Based on Fluid-solid Coupling Theory[J]. Safety in Coal Mines, 2016, 47(9): 39-41.
    [8]WANG Fei, ZHU Hongli, ZHANG Jianzhen. Surrounding Rock Stability Numerical Simulation in Water-rich Roadway Based on Fluid-solid Coupling Theory[J]. Safety in Coal Mines, 2016, 47(4): 219-221,225.
    [9]JIN Yongfei, LI Haitao, MA Rong, ZHAO Xianke. Numerical Simulation of Fluid-structure Interaction in Elbow Segment of Thickening Colloid Conveying Pipeline[J]. Safety in Coal Mines, 2015, 46(1): 13-16,21.
    [10]LI Wen-min, GAO Zhao-ning, MENG Xiang-rui, ZHANG Feng-da, LI Qi, YUAN Lin. The Fluid-solid Coupling Numerical Simulation of Mining Above Confined Water[J]. Safety in Coal Mines, 2013, 44(2): 57-60.
  • Cited by

    Periodical cited type(6)

    1. 邢林庄,周泽南,刘可成,尹泽斌,于永生,王贵. 流固耦合下破碎性煤系地层坍塌规律研究. 钻采工艺. 2024(05): 24-32 .
    2. 彭江. 渤海莱州湾沙河街煤层安全钻井技术探析. 中国石油和化工标准与质量. 2024(22): 186-188 .
    3. 张大力,李文明,贾涛,郭良,王明明. 高温高压条件下钻井液泥饼特征研究. 当代化工. 2023(07): 1619-1623 .
    4. 李华洋,朱施杰,邓金根,张水良. 海上钻井井壁稳定性研究及应用——以A-1井为例. 科学技术与工程. 2022(36): 16007-16015 .
    5. 任美洲. 松软储层煤层气水平井钻井液技术. 石化技术. 2021(08): 98-99 .
    6. 邓嵘,刘建平,罗敏敏,张家彧,黄安龙. 不同温度钻井液浸泡岩石对其表面形貌的影响. 钻井液与完井液. 2021(06): 691-697+704 .

    Other cited types(3)

Catalog

    Article views (33) PDF downloads (0) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return