• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
ZHANG Qipeng, WEN Xiaojiang, TAN Dongsheng, CHEN Xinyi, YU Hui. Analysis of Influence of Strata Dip Angle on Shear Deformation of Drilling Casing[J]. Safety in Coal Mines, 2020, 51(5): 183-186.
Citation: ZHANG Qipeng, WEN Xiaojiang, TAN Dongsheng, CHEN Xinyi, YU Hui. Analysis of Influence of Strata Dip Angle on Shear Deformation of Drilling Casing[J]. Safety in Coal Mines, 2020, 51(5): 183-186.

Analysis of Influence of Strata Dip Angle on Shear Deformation of Drilling Casing

More Information
  • Published Date: May 19, 2020
  • Aiming at the shear failure of drilling casing, based on the movement law of overlying strata in coal seam mining, the finite element model of shear deformation of drilling casing is established by ANSYS numerical simulation software, and the effect of different strata dip angles on the stress distribution in the shear deformation area of drilling casing is simulated and analyzed. The results show that after shear deformation of casing, the shear plane changes from original circular to elliptical, and the end point of elliptical long axis is the stress concentration area of shear stress. Increasing the dip angle of strata will result in the increase of the stress concentration area of casing shear stress, and the maximum shear stress in the stress concentration area also gradually increases.
  • [1]
    程远平,付建华,俞启香.中国煤矿瓦斯抽采技术的发展[J].采矿与安全工程学报,2009(2):127-139.
    [2]
    孙海涛,郑颖人,胡千庭,等.地面钻井套管耦合变形作用机理[J].煤炭学报,2011,36(5):823-829.
    [3]
    孙海涛.采动影响下地面钻井的变形破坏机理研究[D].重庆:重庆大学,2008.
    [4]
    Liu Y, Chang L, Zhou F, et al. Numerical modeling of gas flow in deformed well casing for the prediction of local resistance coefficients pertinent to longwall mining and its engineering evaluation[J]. Environmental Earth Sciences, 2017, 76(20): 686.
    [5]
    沈健,金洪伟,许家林.岩层移动对瓦斯抽放钻孔的破坏研究[J].煤矿安全,2010,41(3):1-4.
    [6]
    孙海涛,张艳.地面瓦斯抽采钻孔变形破坏影响因素及防治措施分析[J].矿业安全与环保,2010,37(2):79-81.
    [7]
    张军.地面瓦斯抽采钻井变形破坏主控因素分析[J].煤矿安全,2012,43(12):149-153.
    [8]
    孙海涛,林府进,张军.地面钻井剪切变形破坏模型及其空间规律分析[J].采矿与安全工程学报,2011,28(1):72-76.
    [9]
    王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.
    [10]
    Chen J, Wang T, Zhou Y, et al. Failure modes of the surface venthole casing during longwall coal extraction: A case study[J]. International Journal of Coal Geolo-gy, 2012(90/91): 135-148.
    [11]
    靳飞.地表移动变形随煤层倾角及地表坡度变化规律的数值模拟分析[D].太原:太原理工大学,2016.
    [12]
    王启春,李天和,郭广礼.基岩裸露山区煤层倾角对地表移动规律的影响研究[J].煤炭科学技术,2016, 44(9):155-160.
    [13]
    蔡美峰.岩石力学与工程[M].北京:科学出版社,2013.
    [14]
    李忠晓.寺河矿W2301工作面多巷掘进工艺优化设计研究[D].阜新:辽宁工程技术大学,2012.
  • Related Articles

    [1]YAO Wenjun, DENG Cunbao, FAN Nan, SHEN Wenmai, ZHANG Linfeng, ZHANG Pengli. Numerical simulation of fluid-solid-thermal coupling for CO2 injection enhanced mining in deep coal seams[J]. Safety in Coal Mines, 2024, 55(7): 31-38. DOI: 10.13347/j.cnki.mkaq.20230293
    [2]FAN Yongpeng, HUO Zhonggang, WANG Yong. Numerical simulation of CO2-ECBM based on fluid-solid-thermal coupled model[J]. Safety in Coal Mines, 2022, 53(2): 162-169.
    [3]YANG Changde, WANG Peng, MAO Jinfeng, LI Jinbo, ZHANG Haidong. Numerical Simulation of Triaxial Compression Experiment of Rock Mass Under Thermal-Fluid-Solid Coupling[J]. Safety in Coal Mines, 2020, 51(5): 50-55.
    [4]FENG Yushi, LIANG Yongchang. Numerical Analysis of Fluid-solid-heat Coupling of Surrounding Rock Around Coalbed Methane Horizontal Wells[J]. Safety in Coal Mines, 2018, 49(1): 206-209.
    [5]ZHANG Bei. Numerical Simulation on Gas-liquid-solid Coupling Mechanism of Gas Drainage in Water-bearing Coal Seam[J]. Safety in Coal Mines, 2017, 48(5): 180-183.
    [6]LI Ke. Fluid-solid Coupling Analysis of Coal Seam Floor Failure Features[J]. Safety in Coal Mines, 2017, 48(3): 171-174.
    [7]NI Hongyang, PU Hai, LI Yun. Simulation Study on Seepage Failure of Sand Based on Fluid-solid Coupling Theory[J]. Safety in Coal Mines, 2016, 47(9): 39-41.
    [8]WANG Fei, ZHU Hongli, ZHANG Jianzhen. Surrounding Rock Stability Numerical Simulation in Water-rich Roadway Based on Fluid-solid Coupling Theory[J]. Safety in Coal Mines, 2016, 47(4): 219-221,225.
    [9]JIN Yongfei, LI Haitao, MA Rong, ZHAO Xianke. Numerical Simulation of Fluid-structure Interaction in Elbow Segment of Thickening Colloid Conveying Pipeline[J]. Safety in Coal Mines, 2015, 46(1): 13-16,21.
    [10]LI Wen-min, GAO Zhao-ning, MENG Xiang-rui, ZHANG Feng-da, LI Qi, YUAN Lin. The Fluid-solid Coupling Numerical Simulation of Mining Above Confined Water[J]. Safety in Coal Mines, 2013, 44(2): 57-60.
  • Cited by

    Periodical cited type(6)

    1. 胡俭,刘茂霞,王航,郭曦蔓,张铎. 粒度对煤吸附/解吸一氧化碳的影响. 煤矿安全. 2024(01): 107-115 . 本站查看
    2. 金霏阳,陈学习,高泽帅. 不同变质程度煤体微孔多重分形特征研究. 煤矿安全. 2024(03): 9-17 . 本站查看
    3. 张慧梅,成瑞,陈世官,郝乐乐. 冻融红砂岩孔隙结构演化规律及多重分形特性. 科学技术与工程. 2024(25): 10901-10909 .
    4. 李子全,张东明,张林玉,王小蕾. 高阶原生煤与构造煤的孔隙及分形特征研究. 煤矿安全. 2023(08): 39-44 . 本站查看
    5. 卢宏伟,徐宏杰,杨祎超,丁海,祝月,苟博明,戴王杰. 煤储层孔隙结构与甲烷吸附能量变化的非均质性特征. 科学技术与工程. 2023(30): 12817-12826 .
    6. 杨红红. 煤体变质程度对突出煤体吸附/解吸影响. 当代化工研究. 2022(13): 13-15 .

    Other cited types(6)

Catalog

    Article views (27) PDF downloads (0) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return