• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
LI Shiyin, WANG Quan, ZHANG Nan. Underground Personnel Positioning System Based on MEMS Inertial Sensors[J]. Safety in Coal Mines, 2017, 48(4): 111-114.
Citation: LI Shiyin, WANG Quan, ZHANG Nan. Underground Personnel Positioning System Based on MEMS Inertial Sensors[J]. Safety in Coal Mines, 2017, 48(4): 111-114.

Underground Personnel Positioning System Based on MEMS Inertial Sensors

More Information
  • Published Date: April 19, 2017
  • According to the special environment and requirements of underground personnel positioning in coal mine, the personnel positioning system was presented, which depended on the micro-electro-mechanical-system inertial measurement unit based on the pedestrian dead reckoning. It obtained data by the accelerometer, the gyroscope and the magnetometer in MEMS, the key technology problem was solved about the sensor drift error combined with the particle filter research, thus the underground positioning accuracy was improved. The experiment result showed that the average error was less than 2 m in 100 meters, which could satisfy the underground personnel positioning requirement.
  • [1]
    王淀佐.中国煤炭走清洁能源之路—评《中国洁净煤》[J]. 煤炭学报, 2010,35(4):685-685.
    [2]
    黄艺,胡善岳,何芊,等.基于Android平台的移动通讯设备的GPS定位研究[J].激光杂志,2014,35(3):42.
    [3]
    陆霞. WiFi定位技术——基于质心定位的三边定位算法的研究[J].电脑知识与技术,2013(25):5765.
    [4]
    蒋峰,张凌涛,贺超英. WiFi技术在矿井远程监控系统中的应用[J]. 煤矿安全,2010,41(3):62-65.
    [5]
    周亮,付永涛,李广军.无线定位与惯性导航结合的室内定位系统设计[J]. 电子技术应用,2014,40(4):73.
    [6]
    马帅旗. MEMS陀螺仪参数校准方法研究[J].电子技术应用,2015,41(4):50-52.
    [7]
    徐元坤.基于MENS-INS的智能手机室内定位系统[J]. 测绘地理信息,2015,40(3):63-65.
    [8]
    Shin S H, Park C G. Adaptive step length estimation algorithm using optimal parameters and movement status awareness[J]. Medical engineering & physics, 2011,33(9): 1064-1071.
    [9]
    S. H. Shin, C. G. Park, J. W. Kim, et al. Adaptive Step Length Estimation Algorithm Using Low-Cost MEMS Inertial Sensors[C]//Proceedings of the 2007 IEEE Sensors Applications Symposium. Washington: IEEE Computer Society, 2007:1-5.
    [10]
    S. O. H. Madgwick, A. J. L. Harrison and R. Vaidy-anathan,."Estimation of IMU and MARG orientation using a gradient descent algorithm[C]//Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics.Zurich:IEEE ,2011:1-7.
  • Related Articles

    [1]YAO Wenjun, DENG Cunbao, FAN Nan, SHEN Wenmai, ZHANG Linfeng, ZHANG Pengli. Numerical simulation of fluid-solid-thermal coupling for CO2 injection enhanced mining in deep coal seams[J]. Safety in Coal Mines, 2024, 55(7): 31-38. DOI: 10.13347/j.cnki.mkaq.20230293
    [2]FAN Yongpeng, HUO Zhonggang, WANG Yong. Numerical simulation of CO2-ECBM based on fluid-solid-thermal coupled model[J]. Safety in Coal Mines, 2022, 53(2): 162-169.
    [3]YANG Changde, WANG Peng, MAO Jinfeng, LI Jinbo, ZHANG Haidong. Numerical Simulation of Triaxial Compression Experiment of Rock Mass Under Thermal-Fluid-Solid Coupling[J]. Safety in Coal Mines, 2020, 51(5): 50-55.
    [4]FENG Yushi, LIANG Yongchang. Numerical Analysis of Fluid-solid-heat Coupling of Surrounding Rock Around Coalbed Methane Horizontal Wells[J]. Safety in Coal Mines, 2018, 49(1): 206-209.
    [5]ZHANG Bei. Numerical Simulation on Gas-liquid-solid Coupling Mechanism of Gas Drainage in Water-bearing Coal Seam[J]. Safety in Coal Mines, 2017, 48(5): 180-183.
    [6]LI Ke. Fluid-solid Coupling Analysis of Coal Seam Floor Failure Features[J]. Safety in Coal Mines, 2017, 48(3): 171-174.
    [7]NI Hongyang, PU Hai, LI Yun. Simulation Study on Seepage Failure of Sand Based on Fluid-solid Coupling Theory[J]. Safety in Coal Mines, 2016, 47(9): 39-41.
    [8]WANG Fei, ZHU Hongli, ZHANG Jianzhen. Surrounding Rock Stability Numerical Simulation in Water-rich Roadway Based on Fluid-solid Coupling Theory[J]. Safety in Coal Mines, 2016, 47(4): 219-221,225.
    [9]JIN Yongfei, LI Haitao, MA Rong, ZHAO Xianke. Numerical Simulation of Fluid-structure Interaction in Elbow Segment of Thickening Colloid Conveying Pipeline[J]. Safety in Coal Mines, 2015, 46(1): 13-16,21.
    [10]LI Wen-min, GAO Zhao-ning, MENG Xiang-rui, ZHANG Feng-da, LI Qi, YUAN Lin. The Fluid-solid Coupling Numerical Simulation of Mining Above Confined Water[J]. Safety in Coal Mines, 2013, 44(2): 57-60.
  • Cited by

    Periodical cited type(6)

    1. 胡俭,刘茂霞,王航,郭曦蔓,张铎. 粒度对煤吸附/解吸一氧化碳的影响. 煤矿安全. 2024(01): 107-115 . 本站查看
    2. 金霏阳,陈学习,高泽帅. 不同变质程度煤体微孔多重分形特征研究. 煤矿安全. 2024(03): 9-17 . 本站查看
    3. 张慧梅,成瑞,陈世官,郝乐乐. 冻融红砂岩孔隙结构演化规律及多重分形特性. 科学技术与工程. 2024(25): 10901-10909 .
    4. 李子全,张东明,张林玉,王小蕾. 高阶原生煤与构造煤的孔隙及分形特征研究. 煤矿安全. 2023(08): 39-44 . 本站查看
    5. 卢宏伟,徐宏杰,杨祎超,丁海,祝月,苟博明,戴王杰. 煤储层孔隙结构与甲烷吸附能量变化的非均质性特征. 科学技术与工程. 2023(30): 12817-12826 .
    6. 杨红红. 煤体变质程度对突出煤体吸附/解吸影响. 当代化工研究. 2022(13): 13-15 .

    Other cited types(6)

Catalog

    Article views (266) PDF downloads (0) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return