• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
WEN Tianfei, GAO Yu, WANG Quan, et al. Key technologies for path planning of coal mine wheeled robots integrating fast traversal random trees and Q-reinforcement learning[J]. Safety in Coal Mines, 2025, 56(3): 233−241. DOI: 10.13347/j.cnki.mkaq.20241415
Citation: WEN Tianfei, GAO Yu, WANG Quan, et al. Key technologies for path planning of coal mine wheeled robots integrating fast traversal random trees and Q-reinforcement learning[J]. Safety in Coal Mines, 2025, 56(3): 233−241. DOI: 10.13347/j.cnki.mkaq.20241415

Key technologies for path planning of coal mine wheeled robots integrating fast traversal random trees and Q-reinforcement learning

More Information
  • Received Date: September 26, 2024
  • Revised Date: October 21, 2024
  • There are a lot of dangerous environment and large volume transportation tasks in the coal mining process. Improving the working quality of coal mine equipment is the key to the intelligent construction of coal mine. In order to improve the efficiency of coal mine production and the safety of transportation tasks, a path planning method of coal mine wheeled robot based on reinforcement learning is proposed. This method uses greedy strategy to guide the direction of random tree expansion, uses Markov decision to reduce the invalid nodes generated during expansion, smooths the path trajectory through third-order Bessel curve, and adds expert experience playback pool to improve the computational efficiency. The experimental results show that the global path length generated by the research method can be reduced by at least 10.71% compared with other algorithms in the planned path length test. In the multi-obstacle scenario planning time test, the planning time of the research method is only 0.452 s. In the analysis of obstacle avoidance effect, the research method can effectively avoid static obstacle and dynamic obstacle. The research method has faster path planning efficiency and can generate safer robot running paths.

  • [1]
    李娟,金志雄. 基于轻量化Transformer的农作物检测机器人路径规划[J]. 中国农机化学报,2024,45(9):227−233.

    LI Juan, JIN Zhixiong. Path planning of crop inspection robot based on lightweight Transformer[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(9): 227−233.
    [2]
    牟远明,卓然,高飞. 基于混合改进麻雀搜索算法的农用移动机器人路径规划[J]. 中国农机化学报,2024,45(9):234−243.

    MOU Yuanming, ZHUO Ran, GAO Fei. Path planning of agricultural mobile robot based on hybrid improved sparrow search algorithm[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(9): 234−243.
    [3]
    秦洪懋,金英杰,杨泽宇,等. 融合模式决策的4WIS车辆路径规划方法[J]. 湖南大学学报(自然科学版),2024,51(8):176−184.

    QIN Hongmao, JIN Yingjie, YANG Zeyu, et al. Path planning method integrated with mode decision for 4WIS vehicles[J]. Journal of Hunan University(Natural Sciences), 2024, 51(8): 176−184.
    [4]
    张万枝,赵威,李玉华,等. 基于改进A*算法+LM-BZS算法的农业机器人路径规划[J]. 农业机械学报,2024,55(8):81−92.

    ZHANG Wanzhi, ZHAO Wei, LI Yuhua, et al. Path planning of agricultural robot based on improved A*and LM-BZS algorithms[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(8): 81−92.
    [5]
    颜玮杉,陈敏,程煌坤,等. 基于语义拓扑结构的井下无人机自主飞行路径规划方法[J]. 机械设计与研究,2024,40(4):61−66.

    YAN Weishan, CHEN Min, CHENG Huangkun, et al. Autonomous path planning method for underground UAV based on semantic topology[J]. Machine Design and Research, 2024, 40(4): 61−66.
    [6]
    吴立宝,刘智欢,周丹凤. 学校课程规划的现实需求与路径探寻[J]. 教学与管理,2024(24):27−30.

    WU Libao, LIU Zhihuan, ZHOU Danfeng. Practical needs and path exploration of school curriculum planning[J]. Teaching and Administration, 2024(24): 27−30.
    [7]
    乔凯,张宏涛,彭威. 基于改进双向A*算法的软管线束自动布置方法[J]. 现代制造工程,2024(8):136−143.

    QIAO Kai, ZHANG Hongtao, PENG Wei. Automatic layout method of hose harness based on improved bidirectional A* algorithm[J]. Modern Manufacturing Engineering, 2024(8): 136−143.
    [8]
    方城亮,杨飞生,潘泉. 基于MASAC强化学习算法的多无人机协同路径规划[J]. 中国科学(信息科学),2024,54(8):1871−1883.

    FANG Chengliang, YANG Feisheng, PAN Quan. Multi-UAV collaborative path planning based on multi-agent soft actor critic[J]. Scientia Sinica(Informationis), 2024, 54(8): 1871−1883.
    [9]
    李俊萩,刘博文,张晴晖,等. 结合改进YOLOv8n及SLAM的机器人自主巡检控制系统研究[J]. 传感器与微系统,2024,43(8):16−20.

    LI Junqiu, LIU Bowen, ZHANG Qinghui, et al. Research on autonomous inspection control system of robot combined with improved YOLOv8n and SLAM[J]. Transducer and Microsystem Technologies, 2024, 43(8): 16−20.
    [10]
    甘福宝,王仲阳,连寅行,等. 基于改进灰狼优化算法的移动机器人路径规划方法[J]. 传感器与微系统,2024,43(8):110−113.

    GAN Fubao, WANG Zhongyang, LIAN Yinhang, et al. Path planning method of mobile robot based on improved grey wolf optimization algorithm[J]. Transducer and Microsystem Technologies, 2024, 43(8): 110−113.
    [11]
    李丁,张宇,金皓,等. 基于改进RRT*算法的机械臂避障路径规划[J]. 组合机床与自动化加工技术,2024(8):6−12.

    LI Ding, ZHANG Yu, JIN Hao, et al. Path planning for manipulator obstacle avoidance based on improved RRT* algorithm[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2024(8): 6−12.
    [12]
    朱波,姜官武,王旭亮,等. 基于改进RRT-Connect算法的移动机器人路径规划[J]. 组合机床与自动化加工技术,2024(8):33−37.

    ZHU Bo, JIANG Guanwu, WANG Xuliang, et al. Path planning for mobile robot based on improved RRT-Connect algorithm[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2024(8): 33−37.
    [13]
    吴飞,陈恩杰,郑银环,等. 基于改进APF-Informed-RRT*的机械臂避障路径规划[J]. 组合机床与自动化加工技术,2024(8):60−65.

    WU Fei, CHEN Enjie, ZHENG Yinhuan, et al. Obstacle avoidance path planning of manipulator based on improved APF-Informed-RRT*[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2024(8): 60−65.
    [14]
    曹京威,何秋生. 基于改进DDQN的无人车路径规划算法[J]. 组合机床与自动化加工技术,2024(8):48−53.

    CAO Jingwei, HE Qiusheng. An improved DDQN path planning algorithm for unmanned vehicle[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2024(8): 48−53.
    [15]
    姜任奔,孙文磊,张学东,等. 数据驱动的变压器生产物料智能配送研究[J]. 组合机床与自动化加工技术,2024(8):180−184.

    JIANG Renben, SUN Wenlei, ZHANG Xuedong, et al. Research on data driven intelligent distribution method of transformer production materials[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2024(8): 180−184.
    [16]
    罗济雨,孙丙宇. 基于改进型RRT*算法的移动机器人路径规划[J]. 计算机工程与设计,2024,45(8):2357−2363.

    LUO Jiyu, SUN Bingyu. Path planning of mobile robot based on improved RRT* algorithm[J]. Computer Engineering and Design, 2024, 45(8): 2357−2363.
    [17]
    BABU A, KAVITHA T, DE PRADO R P, et al. HOPAV: Hybrid optimization-oriented path planning for non-connected and connected automated vehicles[J]. IET Control Theory & Applications, 2023, 17(14): 1919−1929.
    [18]
    SHI K, WU Z, JIANG B, et al. Dynamic path planning of mobile robot based on improved simulated annealing algorithm[J]. Journal of the Franklin Institute, 2023, 360(6): 4378−4398. doi: 10.1016/j.jfranklin.2023.01.033
    [19]
    王娜,吴延凯,许娜. 基于粒子群优化算法的农业机器人控制策略研究[J]. 农机化研究,2025,47(1):205−209.

    WANG Na, WU Yankai, XU Na. Research on control strategy of agricultural robot based on particle swarm optimization algorithm[J]. Journal of Agricultural Mechanization Research, 2025, 47(1): 205−209.
    [20]
    丁昌荣,金涛,李志军,等. 深度神经网络在AGV实时导航优化的应用研究[J]. 机械设计与制造,2024(8):128−134.

    DING Changrong, JIN Tao, LI Zhijun, et al. Application of deep neural network in AGV real time navigation optimization[J]. Machinery Design & Manufacture, 2024(8): 128−134.
    [21]
    陈慧敏,窦培林,程晨,等. 基于Bi-RRT和TEB算法的风电水域多目标点路径规划[J]. 船海工程,2024,53(4):130−136.

    CHEN Huimin, DOU Peilin, CHENG Chen, et al. Multi-objective point path planning for wind turbine waters based on Bi-RRT and TEB algorithms[J]. Ship & Ocean Engineering, 2024, 53(4): 130−136.
    [22]
    郭泰,颜铤. 煤矿救援机器人路径规划的蚁群优化算法[J]. 能源与环保,2021,43(11):233−238.

    GUO Tai, YAN Ting. Ant colony optimization algorithm for path planning of coal mine rescue robot[J]. China Energy and Environmental Protection, 2021, 43(11): 233−238.
  • Related Articles

    [1]CHEN Tao, ZHANG Youzhen, XU Chao. Research and application of intelligent identification algorithm for underground drilling accidents in coal mines[J]. Safety in Coal Mines, 2025, 56(3): 242-249. DOI: 10.13347/j.cnki.mkaq.20240658
    [2]TANG Junfei, XING Hailong, LI Su, ZHANG Taotao, LIU Heng, YAO Shiyu. Target detection technology of coal mine wheeled robot combining improved CNN and self attention mechanism[J]. Safety in Coal Mines, 2025, 56(3): 224-232. DOI: 10.13347/j.cnki.mkaq.20241414
    [3]HUANG Chenxuan, WANG Lei. Thinning point cloud thickening method of mine roadway based on up-sampling algorithm[J]. Safety in Coal Mines, 2025, 56(3): 215-223. DOI: 10.13347/j.cnki.mkaq.20240537
    [4]CHEN Cheng, SU Chengjie. Energy efficient path planning method for coal mine patrol robot[J]. Safety in Coal Mines, 2024, 55(6): 211-216. DOI: 10.13347/j.cnki.mkaq.20240016
    [5]HAO Shuai, WANG Huaixiu, LIU Zuiliang. Collapsed column identification model based on K-means SMOTE and random forest algorithm[J]. Safety in Coal Mines, 2023, 54(2): 174-180.
    [6]ZHANG Wei, FU Yuan, LIU Xin. Research on coal rock recognition algorithm and “self-learning” model[J]. Safety in Coal Mines, 2021, 52(8): 132-136.
    [7]WANG Jianghua, JIN Wentao. Study on Local Path Planning of Mine Rescue Robot Based on Particle Group Radial Basis Function Network[J]. Safety in Coal Mines, 2018, 49(5): 139-142.
    [8]GUO Dong, ZHANG Hong. Application of Dijkstra Algorithm in Underground Escape Training System[J]. Safety in Coal Mines, 2015, 46(11): 91-93,94.
    [9]REN Jie, ZHANG Dong, FENG Wenbin, CHEN Qing, LIU Peng. Coal Mine Personnel Positioning Algorithm Based on Path Searching[J]. Safety in Coal Mines, 2014, 45(2): 86-88.
    [10]GUO Zhen. Application of Improved Ant Colony Algorithm in Mine Fire Location System[J]. Safety in Coal Mines, 2012, 43(8): 151-154.

Catalog

    Article views (11) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return