Citation: | CHEN Tao, ZHANG Youzhen, XU Chao. Research and application of intelligent identification algorithm for underground drilling accidents in coal mines[J]. Safety in Coal Mines, 2025, 56(3): 242−249. DOI: 10.13347/j.cnki.mkaq.20240658 |
An analysis was conducted on the identification methods of underground drilling conditions in coal mines from three aspects: parameter collection, data processing, and abnormal condition recognition. A framework for identifying common underground drilling conditions in coal mines was proposed, consisting of a data collection layer, a processing layer, and a condition recognition layer. Among them, the data acquisition layer can collect drilling parameters; the data processing layer includes data cleaning of outlier points, extraction of feature parameters, and fusion of multi-source information from sensors; the working condition recognition layer adopts classification algorithms and optimization algorithms in machine learning, and combines two or more recognition algorithms to form a hybrid intelligent working condition recognition algorithm. It learns data and trains models for drilling parameters with working condition classification labels, ultimately achieves intelligent recognition of drilling working conditions. Based on typical drilling parameters such as torque, pump pressure, and drilling speed in a coal mine in Huainan, Anhui Province, a nuclear extreme learning machine (KELM) recognition model optimized using the whale algorithm (WOA) was constructed to identify typical working conditions. By learning from the training set samples, the WOA-KELM model with higher recognition accuracy than SVM, KNN, and other recognition models was adopted to achieve intelligent recognition of typical working conditions.
[1] |
王双明,段中会,马丽,等. 西部煤炭绿色开发地质保障技术研究现状与发展趋势[J]. 煤炭科学技术,2019,47(2):1−6.
WANG Shuangming, DUAN Zhonghui, MA Li, et al. Research status and future trends of geological assurance technology for coal green development in Western China[J]. Coal Science and Technology, 2019, 47(2): 1−6.
|
[2] |
石智军,姚克,姚宁平,等. 我国煤矿井下坑道钻探技术装备40年发展与展望[J]. 煤炭科学技术,2020,48(4):1−34.
SHI Zhijun, YAO Ke, YAO Ningping, et al. 40 years of development and prospect on underground coal mine tunnel drilling technology and equipment in China[J]. Coal Science and Technology, 2020, 48(4): 1−34.
|
[3] |
张幼振, 徐信芯, 阚志涛. 煤矿坑道回转钻进动力学研究现状与展望[J]. 煤炭科学技术, 2019, 47(1): 145−151.
ZHANG Youzhen, XU Xinxin, KAN Zhitao. Research status and tendency on underground rotary drilling dynamics in coal mine[J]. Coal Science and Technology, 2019, 47(1): 145−151.
|
[4] |
刘洋,丁震. 煤矿安全智能化体系建设思路探讨[J]. 工矿自动化,2023,49(S1):18−20.
LIU Yang, DING Zhen. Discussion on the construction of intelligent system of mine safety[J]. Journal of Mine Automation, 2023, 49(S1): 18−20.
|
[5] |
张幼振,范涛,阚志涛,等. 煤矿巷道掘进超前钻探技术应用与发展[J]. 煤田地质与勘探,2021,49(5):286−293.
ZHANG Youzhen, FAN Tao, KAN Zhitao, et al. Application and development of advanced drilling technology for coal mine roadway heading[J]. Coal Geology & Exploration, 2021, 49(5): 286−293.
|
[6] |
孙金声,刘凡,程荣超,等. 机器学习在防漏堵漏中研究进展与展望[J]. 石油学报,2022,43(1):91−100. doi: 10.7623/syxb202201008
SUN Jinsheng, LIU Fan, CHENG Rongchao, et al. Research progress and prospects of machine learning in lost circulation control[J]. Acta Petrolei Sinica, 2022, 43(1): 91−100. doi: 10.7623/syxb202201008
|
[7] |
刘慕臣,宋先知,李大钰,等. 钻柱摩阻扭矩智能预测模型与解释[J]. 煤田地质与勘探,2023,51(9):89−99. doi: 10.12363/issn.1001-1986.23.06.0330
LIU Muchen, SONG Xianzhi, LI Dayu, et al. An intelligent prediction method and interpretability for drag and torque of drill string[J]. Coal Geology & Exploration, 2023, 51(9): 89−99. doi: 10.12363/issn.1001-1986.23.06.0330
|
[8] |
孟祥坤,陈国明,郑纯亮,等. 基于风险熵和复杂网络的深水钻井井喷事故风险演化评估[J]. 化工学报,2019,70(1):388−397.
MENG Xiangkun, CHEN Guoming, ZHENG Chunliang, et al. Risk evaluation model of deepwater drilling blowout accident based on risk entropy and complex network[J]. CIESC Journal, 2019, 70(1): 388−397.
|
[9] |
UNRAU S, TORRIONE P. Adaptive real-time machine learning-based alarm system for influx and loss detection[C]//SPE Annual Technical Conference and Exhibition. SPE, 2017.
|
[10] |
夏文鹤,赵宗旭,李皋,等. 基于非线性分类网络的气体钻井风险智能识别方法[J]. 信息与控制,2023,52(4):455−465.
XIA Wenhe, ZHAO Zongxu, LI Gao, et al. Intelligent identification method of gas drilling risk based on non-linear classification network[J]. Information and Control, 2023, 52(4): 455−465.
|
[11] |
TRIPATHI A M, DUTTABARUAH R, SUBBIAH S. Oil well drilling activities recognition using a hierarchical classifier[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107883. doi: 10.1016/j.petrol.2020.107883
|
[12] |
李泉新,褚志伟,许超,等. 煤矿井下泥浆脉冲无线随钻测量定向钻进技术[J]. 煤矿安全,2021,52(7):116−120.
LI Quanxin, CHU Zhiwei, XU Chao, et al. Directional drilling technology with mud pulse wireless MWD in underground coal mine[J]. Safety in Coal Mines, 2021, 52(7): 116−120.
|
[13] |
方俊,鄢泰宁,卢春华,等. 全液压深孔钻机适用的钻探参数监测系统[J]. 煤田地质与勘探,2013(1):84−88.
FANG Jun, YAN Taining, LU Chunhua, et al. Drilling parameter monitoring system suitable to fully hydraulic drill rig[J]. Coal Geology & Exploration, 2013(1): 84−88.
|
[14] |
方鹏,姚克,王松,等. 煤矿井下定向钻机钻进参数监测系统研制[J]. 煤炭科学技术,2019,47(12):124−130.
FANG Peng, YAO Ke, WANG Song, et al. Development of drilling parameter monitoring system for directional drilling rig in coal mine[J]. Coal Science and Technology, 2019, 47(12): 124−130.
|
[15] |
李泉新,刘飞,方俊,等. 我国煤矿井下智能化钻探技术装备发展与展望[J]. 煤田地质与勘探,2021,49(6):265−272.
LI Quanxin, LIU Fei, FANG Jun, et al. Development and prospect of intelligent drilling technology and equipment for underground coal mines in China[J]. Coal Geology & Exploration, 2021, 49(6): 265−272.
|
[16] |
王忠宾,司垒,魏东,等. 煤矿防冲钻孔机器人全自主钻进系统关键技术[J]. 煤炭学报,2024,49(2):1240−1258.
WANG Zhongbin, SI Lei, WEI Dong, et al. Key technologies of fully autonomous drilling system for coal mine anti-impact drilling robot[J]. Journal of China Coal Society, 2024, 49(2): 1240−1258.
|
[17] |
潘红光,裴嘉宝,侯媛彬. 智慧煤矿数据驱动检测技术研究[J]. 工矿自动化,2020,46(10):49−54.
PAN Hongguang, PEI Jiabao, HOU Yuanbin. Research on data-driven detection technology of smart coal mine[J]. Industry and Mine Automation, 2020, 46(10): 49−54.
|
[18] |
CAO Bohan, YIN Qishuai, GUO Yingying, et al. Field data analysis and risk assessment of shallow gas hazards based on neural networks during industrial deep-water drilling[J]. Reliability Engineering & System Safety, 2023, 232: 109079.
|
[19] |
LI Yupeng, CAO Weihua, GAN Chao. A safety assessment method based on online sequential extreme learning machine (OS-ELM) in deep drilling process[C]//37th Chinese Control Conference. Technical Committee on Control Theory, Chinese Association of Automation, 2018: 10228−10232.
|
[20] |
TOMOYA Inoue, DAISUKE Sugiyama. Machine learning approaches to anomaly detection of top drive torque causing drill pipe failure[C]//Proceedings of the ASME 37th International Conference on Ocean, Offshore and Arctic Engineering. ASME, 2018: V008T11A00.
|
[21] |
ROSTAMI Habib, MANSHAD Abbas Khaksar. A new support vector machine and artificial neural networks for prediction of stuck pipe in drilling of oil fields[J]. Journal of Energy Resources Technology, 2014, 136(2): 024502. doi: 10.1115/1.4026917
|
[22] |
王清峰,陈航. 瓦斯抽采智能化钻探技术及装备的发展与展望[J]. 工矿自动化,2018,44(11):18−24.
WANG Qingfeng, CHEN Hang. Development and prospect on intelligent drilling technology and equipment for gas drainage[J]. Industry and Mine Automation, 2018, 44(11): 18−24.
|
[23] |
赵常辛,刘海青. 煤矿智能化开采技术研究现状及展望[J]. 工矿自动化,2022,48(S2):27−29.
ZHAO Changxin, LIU Haiqing. Research status and prospect of intelligent mining technology in coal mine[J]. Industry and Mine Automation, 2022, 48(S2): 27−29.
|
[24] |
许超,石智军. 煤矿井下定向钻进钻孔事故的预防及处理[J]. 煤田地质与勘探,2014,42(3):100−104. doi: 10.3969/j.issn.1001-1986.2014.03.023
XU Chao, SHI Zhijun. Prevention and treatment of drilling accident in underground coal mine[J]. Coal Geology & Exploration, 2014, 42(3): 100−104. doi: 10.3969/j.issn.1001-1986.2014.03.023
|
[25] |
姚宁平,吴敏,陈略峰,等. 煤矿坑道钻进过程智能优化与控制技术[J]. 煤田地质与勘探,2023,51(9):1−9. doi: 10.12363/issn.1001-1986.22.04.0214
YAO Ningping, WU Min, CHEN Luefeng, et al. Intelligent optimization and control technology for drilling process of coalmine tunnels[J]. Coal Geology & Exploration, 2023, 51(9): 1−9. doi: 10.12363/issn.1001-1986.22.04.0214
|