• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
SUN Xiaodong. Key technologies of a full mine artificial intelligence (AI) supervision platform[J]. Safety in Coal Mines, 2023, 54(12): 220-226. DOI: 10.13347/j.cnki.mkaq.2023.12.027
Citation: SUN Xiaodong. Key technologies of a full mine artificial intelligence (AI) supervision platform[J]. Safety in Coal Mines, 2023, 54(12): 220-226. DOI: 10.13347/j.cnki.mkaq.2023.12.027

Key technologies of a full mine artificial intelligence (AI) supervision platform

More Information
  • Received Date: October 26, 2023
  • Available Online: December 21, 2023
  • Based on video perception, using networks and information technology as media, and supported by artificial intelligence and big data technology, a full mine artificial intelligence (AI) supervision platform is constructed, and the overall architecture and core scenarios of the platform is introduced; based on the design of the entire platform, key technologies such as low sample dataset enhancement technology, model training technology, data reasoning and decision-making, and microservice backend development technology were discussed. The on-site application shows that the deep learning algorithm of the entire mine artificial intelligence (AI) supervision platform has an accuracy rate of over 90% in mining image classification, and an accuracy rate of over 80% in object detection.

  • [1]
    GB/T 34679—2017智慧矿山信息系统通用技术规范[S].
    [2]
    GB/T 51272—2018煤炭工业智能化矿井设计标准[S].
    [3]
    煤安监办[2019]42号 国家煤矿安全监察局关于加快推进煤矿安全风险预警系统建设的指导意见[A].
    [4]
    2020年3月发展改革委、能源局、应急部、煤监局、工信部、财政部、科技部、教育部8部委 关于加快煤矿智能化发展的指导意见[A].
    [5]
    矿安[2022]128号 国家矿山安监局 财政部关于印发《煤矿及重点非煤矿山重大灾害风险防控建设工作总体方案》的通知[A].
    [6]
    T/CCS001—2020 智能化煤矿(井工)分类、分级技术条件与评价[S].
    [7]
    GA/T 1127—2013安全防范视频监控摄像机通用技术要求[S].
    [8]
    GA/T 367-2001视频安防监控系统技术要求[S].
    [9]
    YANN Lecun, YOSHUA Bengio, GEOFFREY Hinton. Deep learning[J]. Nature, 2015, 521(7553): 436−444. doi: 10.1038/nature14539
    [10]
    PRECUP Doina, FREUND Yoav. Deep Reinforcement Learning Hands-On[M]. Hands-On Series Packt publishing Ltd. , 2018.
    [11]
    史蒂芬·卢奇(Stephen Lucci), 丹尼·科佩克(Danny Kopec). 人工智能[M]. 北京: 人民邮电出版社, 2018.
    [12]
    鲁伟. 机器学习[M]. 北京: 人民邮电出版社, 2022.
    [13]
    Ian Goodfellow(伊恩·古德费洛), Yoshua Bengio(约书亚·本吉奥), Aaron Courville(亚伦·库维尔) . 深度学习[M]. 北京: 人民邮电出版社, 2017.
    [14]
    Thomas ERL, Zaigham Mahmood, Ricardo Puttini. 云计算: 概念、技术与架构[M]. 龚奕利, 贺莲, 胡创, 译. 北京: 机械工业出版社, 2014.
    [15]
    王柏生, 谢广军. 深度探索Linux系统虚拟化: 原理与实现[M]. 北京: 机械工业出版社, 2020.
    [16]
    凯文 R 福尔, W 理查德·史蒂文森, 加里·R 赖特. TCP/IP详解[M]. 北京: 机械工业出版社, 2019.
    [17]
    邓立国, 佟强. 数据库原理与应用[M]. 北京: 清华大学出版社, 2017.
    [18]
    杨力. Hadoop大数据开发实战[M]. 北京: 人民邮电出版社, 2019.
    [19]
    克雷格·沃斯(Craig Walls). Spring实战[M]. 张卫滨, 译. 北京: 人民邮电出版社, 2020.
  • Related Articles

    [1]XU Jiang, CHEN Qian, LI Juyun. Molecular simulation of self-diffusion of CH4, H2O and CO2 in coal macromolecule[J]. Safety in Coal Mines, 2024, 55(9): 85-93. DOI: 10.13347/j.cnki.mkaq.20221827
    [2]DENG Xiaopeng, XIANG Jianhua. Molecular simulation study on competitive adsorption characteristics of CO2 and CH4 for 8# coal in Dongqu Mine[J]. Safety in Coal Mines, 2024, 55(3): 18-24. DOI: 10.13347/j.cnki.mkaq.20230796
    [3]WANG Wencai, WANG Peng, CAO Zhao, LI Junpeng. Simulation of gas molecules permeation diffusion in coal structure and gangue slit structure[J]. Safety in Coal Mines, 2023, 54(11): 33-41. DOI: 10.13347/j.cnki.mkaq.2023.11.007
    [4]GAO Yu. Study on mathematical model of coal particles gas adsorption under different particle sizes and pressures[J]. Safety in Coal Mines, 2023, 54(7): 109-117.
    [5]LI Ziwen, BAI Yansong, YU Hongjin, GAO Yabin. Molecular simulation of adsorption thermodynamic properties of CH4 and CO2 at different temperature and moisture content conditions[J]. Safety in Coal Mines, 2022, 53(10): 112-119.
    [6]ZHANG Hongtu, HAO Yushuang, WEI Jianping. Study on Characteristic Parameters of Particulate Coal Gas Desorption and Diffusion Under Negative Pressure Environment[J]. Safety in Coal Mines, 2020, 51(10): 191-195.
    [7]XU Chao, WANG Shuo, GUO Haijun, FU Qiang. Unsteady-state Diffusion Characteristics Model of Gas in Coal and Experimental Verification[J]. Safety in Coal Mines, 2018, 49(5): 1-5.
    [8]LIU Yanwei, LI Tong, XUE Wentao. Difference of Dynamic Variation Laws of Gas Diffusion Coefficient of Soft and Hard Coal[J]. Safety in Coal Mines, 2017, 48(9): 17-20,24.
    [9]CHI Lei-lei, WANG Qi-fei, WANG Fei-yin, LI Zhen, DONG Li-hui, SHI Quan-shou. Coal Gas Desorption and Diffusion Laws and Its Experimental Study[J]. Safety in Coal Mines, 2013, 44(12): 1-3,10.
    [10]LI Yi-bo, ZHENG Wan-cheng, WANG Feng-shuang. The Effect of Coal Sample Particle Size on Coal Adsorption Constants and Initial Speed of Methane Diffusing[J]. Safety in Coal Mines, 2013, 44(1): 5-8.
  • Cited by

    Periodical cited type(3)

    1. 贾丽娜. 基于散斑干涉法的岩体剪切变形程度研究——以铜仁市水库工程为例. 水利科技与经济. 2024(08): 6-9 .
    2. 李明胜. 基于数值模拟分析的煤场软土地基处理. 中国煤炭地质. 2024(11): 44-49+39 .
    3. 陈光波,唐薇,李谭,王创业,王二雨,张国华. 裂隙煤岩组合体单轴压缩力学响应及失稳机制. 岩土力学. 2024(09): 2633-2652 .

    Other cited types(2)

Catalog

    Article views (63) PDF downloads (14) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return