Citation: | YU Zhiqiang. Application of foreign object recognition system based on machine vision in conveyor protection[J]. Safety in Coal Mines, 2024, 55(5): 251−256. DOI: 10.13347/j.cnki.mkaq.20231389 |
This article designs a foreign object recognition system based on machine vision and applies it to the protection of the main transportation belt conveyor. The study uses YOLOv5s as the deep learning model to deploy the trained model to the edge computing module. Real time video is captured by an industrial intrinsic safety camera and transmitted to the edge computing module to identify the foreign matters in the coal flow. Finally, only the recognition results are transmitted externally. When a high level of foreign object danger is detected, an alarm signal will be sent to the collaborative controller, which will issue a shutdown command to the specific single controller. Simultaneously upload the processed real-time video and alarm information to the control platform for display. This design improves the intelligence, stability, and reliability of the protection of the current main conveyor belt conveyor.
[1] |
王国法,富佳兴,孟令宇. 煤矿智能化创新团队建设与关键技术研发进展[J]. 工矿自动化,2022,48(12):1−15.
WANG Guofa, FU Jiaxing, MENG Lingyu. Development of innovation team construction and key technology research in coal mine intelligence[J]. Journal of Mine Automation, 2022, 48(12): 1−15.
|
[2] |
王国法,任怀伟,庞义辉,等. 煤矿智能化(初级阶段)技术体系研究与工程进展[J]. 煤炭科学技术,2020,48(7):1−27.
WANG Guofa, REN Huaiwei, PANG Yihui, et al. Research and engineering progress of intelligent coal mine technical system in early stages[J]. Coal Science and Technology, 2020, 48(7): 1−27.
|
[3] |
陈晓晶. 井工煤矿运输系统智能化技术现状及发展趋势[J]. 工矿自动化,2022,48(6):6−14.
CHEN Xiaojing. Current status and development trend of intelligent technology of underground coal mine transportation system[J]. Journal of Mine Automation, 2022, 48(6): 6−14.
|
[4] |
杨宏飞. 青龙寺煤矿智能矿山研究与实践[J]. 工矿自动化,2022,48(S2):37−41.
YANG Hongfei. Research and practice of intelligent mine in Qinglongsi Coal Mine[J]. Journal of Mine Automation, 2022, 48(S2): 37−41.
|
[5] |
谷树伟. 煤矿输煤智能化控制系统[J]. 工矿自动化,2022,48(S2):102−107.
GU Shuwei. Intelligent control system of coal transportation[J]. Journal of Mine Automation, 2022, 48(S2): 102−107.
|
[6] |
王雁峰. 永智煤矿运输系统智能化改造技术[J]. 山西焦煤科技,2022,46(7):48−51.
WANG Yanfeng. Intelligent transformation technology of Yongzhi Coal Mine transportation system[J]. Shanxi Coking Coal Science & Technology, 2022, 46(7): 48−51.
|
[7] |
刘澎,任文清. 煤矿无人值守带式输送机智能化系统设计[J]. 工矿自动化,2021,47(S2):75−77.
LIU Peng, REN Wenqing. Design of intelligent system of unattended belt conveyor in coal mine[J]. Industry and Mine Automation, 2021, 47(S2): 75−77.
|
[8] |
杨真,贺晓峰,廖志伟,等. 煤矿智能化主运输系统无人值守关键技术研究与实践[J]. 工矿自动化,2022,48(S1):61−66.
YANG Zhen, HE Xiaofeng. Research and practice on key technologies of intelligent unmanned main transportation system in coal mine[J]. Journal of Mine Automation, 2022, 48(S1): 61−66.
|
[9] |
刘锦武,徐瑞,贾兴民. 煤块带式转载机自动分拣及智能调速系统设计[J]. 煤矿机械,2020,41(9):29−31.
LIU Jinwu, XU Rui, JIA Xingmin. Design of automatic sorting and intelligent speed regulation system for coal block belt transfer machine[J]. Coal Mine Machinery, 2020, 41(9): 29−31.
|
[10] |
龚晓燕,陈超明,邢书宝,等. 矿用带式输送机安全隐患预警决策支持系统研究[J]. 煤炭技术,2016,35(12):250−252.
GONG Xiaoyan, CHEN Chaoming, XING Shubao, et al. Research on decision support system of safety hazard warning for belt conveyor in mine[J]. Coal Technology, 2016, 35(12): 250−252.
|
1. |
程士宜. 不同温度-冲击载荷下煤的渗透率演化规律研究. 煤矿安全. 2024(08): 43-50 .
![]() | |
2. |
康俊强,简阔,傅雪海,申建,王一兵,段超超. 急倾斜煤储层水力压裂裂缝扩展研究. 煤矿安全. 2024(11): 49-60 .
![]() | |
3. |
熊冬,贺甲元,马新仿,曲兆亮,郭天魁,马诗语. 深部煤及顶底板不同射孔位置条件下的压裂模拟——以鄂尔多斯盆地某气田8号深部煤层为例. 煤炭学报. 2024(12): 4897-4914 .
![]() |