Citation: | BAO Xiankai, JIANG Bin, WU Ning, et al. Study on stress distribution and prefabricated crack propagation law of shale under high voltage electric pulse load in water[J]. Safety in Coal Mines, 2025, 56(3): 54−65. DOI: 10.13347/j.cnki.mkaq.20231250 |
To study the stress distribution, crack propagation length, and deflection angle of shale under the action of high-pressure electric pulse loads in water, the stress superposition principle was employed to theoretically investigate the distribution of primary and induced stress fields in shale under the influence of high-voltage electric pulses in water. Coupled with a high-voltage electric pulse fracturing system in water, underwater high-voltage pulse rock-breaking and prefabricated crack propagation experiments under triaxial pressure were conducted. The effects of various prefabricated crack lengths (10, 20 mm) and angles (60°, 90°, 120°) on crack propagation were examined from a macroscopic perspective. Numerical simulations of underwater high-voltage pulse rock-breaking and prefabricated crack propagation were performed using the extended finite element method (XFEM) in ABAQUS software. The influence of different prefabricated crack lengths and angles on crack propagation was further analyzed from a microscopic perspective. The research results indicate that: under the action of high-voltage electric pulse loads in water, the surrounding wellbore walls are prone to tensile failure, and cracks are prone to competition, deflection, and other phenomena under the combined action of the original in-situ stress field and induced stress field. The larger the angle and length between prefabricated cracks, the greater the total deflection angle, the longer the extension length, and the weaker the interference between cracks. The stress concentration phenomenon at the tip and deflection of prefabricated cracks is obvious, and the stress field between the prefabricated cracks is concentrated in the region defined by the angles. As the angle between the prefabricated cracks increases, the extent of the concentrated stress region gradually decreases, accompanied by a corresponding reduction in stress values. Consequently, the crack propagation deflection angle decreases, and the mutual interference between cracks diminishes progressively.
[1] |
孙翰文,费繁旭,高阳,等. 吉木萨尔陆相页岩水平井压裂后产量影响因素分析[J]. 特种油气藏,2020,27(2):108−114.
SUN Hanwen, FEI Fanxu, GAO Yang, et al. Production sensitivity analysis of fractured horizontal wells in Jimusar continental shale[J]. Special Oil & Gas Reservoirs, 2020, 27(2): 108−114.
|
[2] |
陈云天,蔡宁生. 页岩气开采技术综述分析[J]. 能源研究与利用,2013(2):28−31. doi: 10.3969/j.issn.1001-5523.2013.02.023
CHEN Yuntian, CAI Ningsheng. Summary and analysis of shale gas exploitation technology[J]. Energy Research & Utilization, 2013(2): 28−31. doi: 10.3969/j.issn.1001-5523.2013.02.023
|
[3] |
席岩,李军,柳贡慧,等. 页岩气水平井多级压裂过程中套管变形研究综述[J]. 特种油气藏,2019,26(1):1−6.
XI Yan, LI Jun, LIU Gonghui, et al. Overview of casing deformation in multistage fracturing of shale gas horizontal wells[J]. Special Oil & Gas Reservoirs, 2019, 26(1): 1−6.
|
[4] |
周宇. 关于页岩气压裂增产技术的研究[J]. 中国石油和化工标准与质量,2022,42(4):167−168. doi: 10.3969/j.issn.1673-4076.2022.04.062
ZHOU Yu. Study on shale gas fracturing stimulation technology[J]. China Petroleum and Chemical Standard and Quality, 2022, 42(4): 167−168. doi: 10.3969/j.issn.1673-4076.2022.04.062
|
[5] |
王琳,毛小平,何娜. 页岩气开采技术[J]. 石油与天然气化工,2011,40(5):504−509.
WANG Lin, MAO Xiaoping, HE Na. Exploitation technology of shale gas[J]. Chemical Engineering of Oil & Gas, 2011, 40(5): 504−509.
|
[6] |
李松,汤达祯,许浩,等. 深部煤层气储层地质研究进展[J]. 地学前缘,2016,23(3):10−16.
LI Song, TANG Dazhen, XU Hao, et al. Progress in geological researches on the deep coalbed methane reservoirs[J]. Earth Science Frontiers, 2016, 23(3): 10−16.
|
[7] |
马东东,罗宇杰,胡大伟,等. 粒径分选性与围压对砂砾岩水力压裂破裂影响机制研究[J]. 岩石力学与工程学报,2020,39(11):2264−2273.
MA Dongdong, LUO Yujie, HU Dawei, et al. Effects of particle size sorting and confining pressure on hydraulic fracturing mechanism of glutenite rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2264−2273.
|
[8] |
卞德存. 静水压下脉冲放电冲击波特性及其岩体致裂研究[D]. 太原:太原理工大学,2018.
BIAN Decun. Study on the characteristics of pulse discharge shock wave and its fracturing of rock mass under static pressure[D]. Taiyuan: Taiyuan University of Technology, 2018.
|
[9] |
尹志强,赵金昌,卞德存,等. 水中高压脉冲放电的延时特性与电流特性研究[J]. 太原理工大学学报,2016,47(3):326−330.
YIN Zhiqiang, ZHAO Jinchang, BIAN Decun, et al. Research on the delay characteristics and current characteristics of high-voltage pulse discharge in water[J]. Journal of Taiyuan University of Technology, 2016, 47(3): 326−330.
|
[10] |
鲍先凯,杨东伟,段东明,等. 高压电脉冲水力压裂法煤层气增透的试验与数值模拟[J]. 岩石力学与工程学报,2017,36(10):2415−2423.
BAO Xiankai, YANG Dongwei, DUAN Dongming, et al. The experiment and numerical simulation of penetration of coalbed methane upon hydraulic fracturing under high-voltage electric pulse[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2415−2423.
|
[11] |
闫东. 岩体内静水压下高压脉冲放电爆轰致裂基础研究[D]. 太原:太原理工大学,2017.
YAN Dong. Basic research on detonation induced by high voltage pulse discharge under hydrostatic pressure in rock mass[D]. Taiyuan: Taiyuan University of Technology, 2017.
|
[12] |
BAO X K, GUO J Y, LIU Y, et al. Damage characteristics and laws of micro-crack of underwater electric pulse fracturing coal-rock mass[J]. Theoretical and Applied Fracture Mechanics, 2021, 111: 102853. doi: 10.1016/j.tafmec.2020.102853
|
[13] |
卞德存,闫东,贾少华,等. 基于高压电脉冲的煤体增透实验台[J]. 煤炭技术,2015,34(8):225−227.
BIAN Decun, YAN Dong, JIA Shaohua, et al. Experiment table of coal anti-reflection based on high-voltage electrical impulses[J]. Coal Technology, 2015, 34(8): 225−227.
|
[14] |
李奎东,纪国法,刘炜,等. 页岩水平井重复压裂现地应力场计算方法[J]. 天然气勘探与开发,2020,43(3):110−118.
LI Kuidong, JI Guofa, LIU Wei, et al. A method for calculating current in situ stress field before refracturing horizontal shale wells[J]. Natural Gas Exploration and Development, 2020, 43(3): 110−118.
|
[15] |
黄旭超. 多煤层压裂裂纹竞争起裂扩展特征分析[J]. 采矿与安全工程学报,2022,39(1):184−191.
HUANG Xuchao. Characteristics of fracture propagation caused by fracture competition in multi-seam fracturing[J]. Journal of Mining & Safety Engineering, 2022, 39(1): 184−191.
|
[16] |
ZHAO J Z, WANG Q, HU Y Q, et al. Numerical simulation of multi-hole fracture competition initiation and propagation[J]. Journal of Natural Gas Geoscience, 2021, 6(1): 43−53. doi: 10.1016/j.jnggs.2021.04.002
|
[17] |
董京楠,金衍,陈勉,等. 页岩Ⅰ型断裂韧性测试及跨尺度裂缝表征研究[J]. 地下空间与工程学报,2019,15(S1):205−210.
DONG Jingnan, JIN Yan, CHEN Mian, et al. Study on type I fracture toughness test and cross-scale fracture characterization of shale[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(S1): 205−210.
|
[18] |
于永军,朱万成,李连崇,等. 水力压裂裂缝相互干扰应力阴影效应理论分析[J]. 岩石力学与工程学报,2017,36(12):2926−2939.
YU Yongjun, ZHU Wancheng, LI Lianchong, et al. Analysis on stress shadow of mutual interference of fractures in hydraulic fracturing engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2926−2939.
|
[19] |
祝铭辰. 多级压裂裂缝诱导应力优化计算模型研究[J]. 复杂油气藏,2019,12(3):77−80.
ZHU Mingchen. An optimization model for induced stress of fractures in multistage fracturing[J]. Complex Hydrocarbon Reservoirs, 2019, 12(3): 77−80.
|
[20] |
刘庆贺,王在敏,陈卓. 基于PCAS对砂土孔隙特征的识别与应用[J]. 实验室研究与探索,2019,38(9):58−61.
LIU Qinghe, WANG Zaimin, CHEN Zhuo. Study on pore characteristics of sandy soil based on PCAS[J]. Research and Exploration in Laboratory, 2019, 38(9): 58−61.
|
[21] |
闫高原,韦重韬,宋昱,等. 基于Ar-SEM及PCAS页岩孔隙结构定量表征[J]. 地球科学,2018,43(5):1602−1610.
YAN Gaoyuan, WEI Chongtao, SONG Yu, et al. Quantitative characterization of shale pore structure based on Ar-SEM and PCAS[J]. Earth Science, 2018, 43(5): 1602−1610.
|
[22] |
郭军宇. 液电效应下页岩裂纹演化机理及特征研究[D]. 包头:内蒙古科技大学,2021.
GUO Junyu. Study on the evolution mechanism and characteristics of shale cracks under hydraulic electric effect[D]. Baotou: Inner Mongolia University of Science & Technology, 2021.
|