• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
TANG Junfei, XING Hailong, LI Su, et al. Target detection technology of coal mine wheeled robot combining improved CNN and self attention mechanism[J]. Safety in Coal Mines, 2025, 56(3): 224−232. DOI: 10.13347/j.cnki.mkaq.20241414
Citation: TANG Junfei, XING Hailong, LI Su, et al. Target detection technology of coal mine wheeled robot combining improved CNN and self attention mechanism[J]. Safety in Coal Mines, 2025, 56(3): 224−232. DOI: 10.13347/j.cnki.mkaq.20241414

Target detection technology of coal mine wheeled robot combining improved CNN and self attention mechanism

More Information
  • Received Date: September 26, 2024
  • Revised Date: October 21, 2024
  • In complex coal mine environment and poor lighting conditions, the existing target detection technology is difficult to meet the needs of intelligent inspection. To solve this problem, an object detection method based on improved convolutional neural network and self-attention mechanism is proposed. Firstly, a feature extraction network based on pyramid structure and attention mechanism is constructed. On this basis, the bidirectional feature pyramid network module is designed to further strengthen the feature extraction function. Finally, the YOLO Head module is used for prediction processing. The test results show that after 2 398 iterations, the loss of the model is stabilized at about 0.01, and the ideal loss effect is achieved. The accuracy of the model reached 0.95 at 1 598 iterations and entered steady state at about 1 845 iterations, which was one of the fastest models to reach steady state. The overall detection time was 3.2 ms. The model can improve the accuracy and efficiency of target detection in complex environment.

  • [1]
    谭斌,王婷. YOLOv5与视差计算算法的目标检测与测距系统设计[J]. 科学技术与工程,2024,24(21):9015−9024.

    TAN Bin, WANG Ting. Design of target detection and ranging system based on YOLOv5 and parallax computing algorithm[J]. Science Technology and Engineering, 2024, 24(21): 9015−9024.
    [2]
    胡峻峰,朱昊,黄晓文,等. 基于深度学习的森林移动机器人树干检测[J]. 森林工程,2024,40(4):109−114.

    HU Junfeng, ZHU Hao, HUANG Xiaowen, et al. Trunk detection for forest mobile robots based on deep learning[J]. Forest Engineering, 2024, 40(4): 109−114.
    [3]
    沈义俊,张炜峰,周健一,等. 机器人在管道提升式深海采矿系统中智能化的挑战与发展趋势[J]. 科技导报,2024,42(12):92−106.

    SHEN Yijun, ZHANG Weifeng, ZHOU Jianyi, et al. Challenges and development trend of intelligent robot in pipe lifting deep sea mining system[J]. Science & Technology Review, 2024, 42(12): 92−106.
    [4]
    TORAJIZADEH H, ASADIRAD A, MASHAYEKHI E, et al. Design and manufacturing a novel screw-in-pipe inspection robot with steering capability[J]. Journal of Field Robotics, 2023, 40(3): 429−446. doi: 10.1002/rob.22136
    [5]
    YANG L, LI B, FENG J, et al. Automated wall-climbing robot for concrete construction inspection[J]. Journal of Field Robotics, 2023, 40(1): 110−129. doi: 10.1002/rob.22119
    [6]
    吴建华,白永福,谢永生,等. 多源信息融合的巡检机器人目标检测算法研究[J]. 无线电工程,2023,53(8):1925−1933.

    WU Jianhua, BAI Yongfu, XIE Yongsheng, et al. Research on object detection algorithm of inspection robot based on multi-source information fusion[J]. Radio Engineering, 2023, 53(8): 1925−1933.
    [7]
    吴忧,袁雪. 基于改进SOLOv2的复杂场景下智能机器人巡检识别算法[J]. 北京交通大学学报,2022,46(5):95−106.

    WU You, YUAN Xue. Inspection and identification algorithm based on improved SOLOv2 of intelligent robot in complex environment[J]. Journal of Beijing Jiaotong University, 2022, 46(5): 95−106.
    [8]
    颜承壮,皇攀凌,周军,等. 基于改进多尺度Retinex的墙体开槽机器人目标检测与定位[J]. 科学技术与工程,2023,23(36):15530−15537.

    YAN Chengzhuang, HUANG Panling, ZHOU Jun, et al. Target detection and location of wall slotting robot based on improved multi-scale retinex[J]. Science Technology and Engineering, 2023, 23(36): 15530−15537.
    [9]
    张瑞,蒋婉玥. 基于视觉跟踪与自主导航的移动机器人目标跟随系统[J]. 工程设计学报,2023,30(6):687−696.

    ZHANG Rui, JIANG Wanyue. Mobile robot target following system based on visual tracking and autonomous navigation[J]. Chinese Journal of Engineering Design, 2023, 30(6): 687−696.
    [10]
    牛鑫宇,毛鹏军,段云涛,等. 基于YOLOv5s室内目标检测轻量化改进算法研究[J]. 计算机工程与应用,2024,60(3):109−118.

    NIU Xinyu, MAO Pengjun, DUAN Yuntao, et al. Research on lightweight improved algorithm for indoor target detection based on YOLOv5s[J]. Computer Engineering and Applications, 2024, 60(3): 109−118.
    [11]
    李应鑫,左韬,赵雄. 基于目标检测的单目视觉半稠密语义地图构建[J]. 科学技术与工程,2023,23(15):6495−6505.

    LI Yingxin, ZUO Tao, ZHAO Xiong. Semi-dense semantic monocular slam based on object detection[J]. Science Technology and Engineering, 2023, 23(15): 6495−6505.
    [12]
    李倩,季昀,孙辅庭,等. 基于图像识别技术和轨道机器人的大坝安全智能移动巡检技术研究[J]. 水电能源科学,2023,41(4):107−109.

    LI Qian, JI Yun, SUN Futing, et al. Research on intelligent mobile inspection technology for dam safety based on image recognition technology and track robot[J]. Water Resources and Power, 2023, 41(4): 107−109.
    [13]
    汪振耀,张礼华,郑俭. 基于深度学习的陪护机器人目标检测方法[J]. 现代电子技术,2024,47(3):51−58.

    WANG Zhenyao, ZHANG Lihua, ZHENG Jian. Object detection method of escort robot based on deep learning[J]. Modern Electronics Technique, 2024, 47(3): 51−58.
    [14]
    王新彦,易政洋. 基于改进YOLOv5的割草机器人工作环境障碍物检测方法研究[J]. 中国农机化学报,2023,44(3):171−176.

    WANG Xinyan, YI Zhengyang. Research on obstacle detection method of mowing robot working environment based on improved YOLOv5[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 171−176.
    [15]
    马东,刘超杰,王立玲,等. 基于精确背景运动补偿的机器人运动目标检测与跟踪[J]. 机床与液压,2023,51(3):20−27.

    MA Dong, LIU Chaojie, WANG Liling, et al. Robot moving target detection and tracking based on accurate background motion compensation[J]. Machine Tool & Hydraulics, 2023, 51(3): 20−27.
    [16]
    吕张成,张建业,陈哲钥,等. 基于深度学习的工业零件识别与抓取实时检测算法[J]. 机床与液压,2023,51(24):33−38.

    LYU Zhangcheng, ZHANG Jianye, CHEN Zheyao, et al. Real-time detection algorithm for industrial parts recognition and grabbing based on deep learning[J]. Machine Tool & Hydraulics, 2023, 51(24): 33−38.
    [17]
    龚琳,芦惠,李想. 基于产教融合的旅游管理专业酒店实习问题研究[J]. 实验技术与管理,2020,37(1):171−175.

    GONG Lin, LU Hui, LI Xiang. Research on hotel internship of tourism management major based on integration of industry and education[J]. Experimental Technology and Management, 2020, 37(1): 171−175.
    [18]
    KANG H, ZHANG W, GE Y, et al. A high-accuracy hollowness inspection system with sensor fusion of ultra-wide-band radar and depth camera[J]. Robotica, 2023, 41(4): 1258−1274. doi: 10.1017/S0263574722001692
    [19]
    孟庆胤,王浩宇,聂明哲,等. 尾矿库坝面安全隐患智能巡检机器人研发及应用[J]. 矿业研究与开发,2024,44(7):230−238.

    MENG Qingyin, WANG Haoyu, NIE Mingzhe, et al. Development and application of intelligent inspection robot for safety hazards on tailings dam surfaces[J]. Mining Research and Development, 2024, 44(7): 230−238.
    [20]
    金涌涛,张恬波,季宇豪,等. 变电站机器人巡检中设备目标动态捕捉识别技术研究[J]. 机械设计,2024,41(S1):159−164.

    JIN Yongtao, ZHANG Tianbo, JI Yuhao, et al. Research on dynamic capture and recognition technology of equipment targets in substation robot inspection[J]. Journal of Machine Design, 2024, 41(S1): 159−164.
    [21]
    蹇川,郑永强,刘艳梅,等. 目标检测算法YOLOv5s用于柑桔成熟果实检测的改进[J]. 中国南方果树,2024,53(1):224−231.

    JIAN Chuan, ZHENG Yongqiang, LIU Yanmei, et al. Improving detection of mature citrus fruit based on target detection algorithm YOLOv5s[J]. South China Fruits, 2024, 53(1): 224−231.
    [22]
    邵小强,李鑫,杨涛,等. 改进YOLOv5s和DeepSORT的井下人员检测及跟踪算法[J]. 煤炭科学技术,2023,51(10):291−301.

    SHAO Xiaoqiang, LI Xin, YANG Tao, et al. Underground personnel detection and tracking based on improved YOLOv5s and DeepSORT[J]. Coal Science and Technology, 2023, 51(10): 291−301.
    [23]
    任百峰. 基于YOLO-V4的矿用巡检机器人无标定视觉伺服控制系统[J]. 煤炭技术,2022,41(10):216−218.

    REN Baifeng. Non-calibrated visual server control system for mining patrol robot based on YOLO-V4[J]. Coal Technology, 2022, 41(10): 216−218.
    [24]
    杨春雨,袁晓光. 煤矿井下巷道变形巡检视频异常检测方法[J]. 工矿自动化,2021,47(2):13−17.

    YANG Chunyu, YUAN Xiaoguang. Anomaly detection method of inspection video for coal mine underground roadway deformation[J]. Industry and Mine Automation, 2021, 47(2): 13−17.
    [25]
    孟浩,安福旺,吉力特. 基于视觉扫描生成巡检任务的机器人巡检方法[J]. 机床与液压,2024,52(3):67−71.

    MENG Hao, AN Fuwang, JI Lite. Robot inspection method based on visual scanning to generate inspection tasks[J]. Machine Tool & Hydraulics, 2024, 52(3): 67−71.

Catalog

    Article views (16) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return