Citation: | BAI Yuchen, MIAO Zuohua, XU Houyou, et al. A algorithm for low light image enhancement in coal mine underground based on illumination constraints[J]. Safety in Coal Mines, 2025, 56(3): 207−214. DOI: 10.13347/j.cnki.mkaq.20240748 |
To address the issues of low visibility, insufficient exposure, and blurred details in images collected in coal mine environments, this research introduces a low light image enhancement algorithm, which is grounded in illumination constraints. The algorithm structure consists of three main modules: the illumination constraint module (ICM), the illumination decomposition module (IDM), and the illumination enhancement module (IEM). The ICM captures the overall light distribution of the image, creates a grayscale attention map to minimize illumination interference, and the IDM decomposes the image into illumination and reflection components. The IEM uses a U-Net network structure to enhance the illumination component. The enhanced illumination component is then combined with the grayscale attention map and reflection component to produce the enhanced image. Both ICM and IDM incorporate an efficient channel attention module (ECA), which regulates light distribution and enhances the feature capture capability for illumination and reflection components. Experiments were conducted in four different scenarios, comparing this algorithm against TBEFN, RUAS, MBLLEN, KinD, and Retinex-Net algorithms. Results indicate that this algorithm surpasses others in visual information fidelity (VIF), structural similarity index metric (SSIM), and peak signal to noise ratio (PSNR), achieving averages of 0.58, 0.61, and 16.58 respectively. Compared to the original model, it showed improvements of approximately 23.40%, 16.07%, and 20.45% in these metrics, demonstrating optimal image enhancement effectiveness.
[1] |
张立亚. 基于图像识别的煤矿井下安全管控技术[J]. 煤矿安全,2021,52(2):165−168.
ZHANG Liya. Safety control technology of coal mine based on image recognition[J]. Safety in Coal Mines, 2021, 52(2): 165−168.
|
[2] |
姚超修,蒋泽,胡亚磊. 基于改进Enlighten GAN的煤矿井下图像增强算法[J]. 煤炭技术,2023,42(9):219−222.
YAO Chaoxiu, JIANG Ze, HU Yalei. Improved image enhancement algorithm for underground coal mine based on Enlighten GAN[J]. Coal Technology, 2023, 42(9): 219−222.
|
[3] |
张立亚,郝博南,孟庆勇,等. 基于HSV空间改进融合Retinex算法的井下图像增强方法[J]. 煤炭学报,2020,45(S1):532−540.
ZHANG Liya, HAO Bonan, MENG Qingyong, et al. Method of image enhancement in coal mine based on improved Retex fusion algorithm in HSV space[J]. Journal of the China Coal Society, 2020, 45(S1): 532−540.
|
[4] |
涂毅晗,汪普庆. 基于多尺度局部直方图均衡化的矿井图像增强方法[J]. 工矿自动化,2023,49(8):94−99.
TU Yihan, WANG Puqing. Mine image enhancement method based on multi-scale local histogram equalization[J]. Journal of Mine Automation, 2023, 49(8): 94−99.
|
[5] |
张旭辉,麻兵,杨文娟,等. 煤矿井下非均匀照度图像去噪研究[J]. 工矿自动化,2024,50(2):1−8.
ZHANG Xuhui, MA Bing, YANG Wenjuan, et al. Research on denoising of uneven lighting images in coal mine underground[J]. Journal of Mine Automation, 2024, 50(2): 1−8.
|
[6] |
薛国华. 基于综采工作面视频监控的图像增强方法[J]. 煤矿安全,2021,52(10):136−141.
XUE Guohua. Image enhancement methods based on video monitoring of fully mechanized mining face[J]. Safety in Coal Mines, 2021, 52(10): 136−141.
|
[7] |
吴正平,程洁莹,雷帮军,等. 基于特征注意力的快速非均匀雾图像去雾算法[J]. 国外电子测量技术,2023,42(9):9−18.
WU Zhengping, CHENG Jieying, LEI Bangjun, et al. Fast nonhomogeneous image dehazing algorithm based on feature attention[J]. Foreign Electronic Measurement Technology, 2023, 42(9): 9−18.
|
[8] |
洪炎,庞荣,魏青,等. 光照不均图像的非线性自适应增强算法[J]. 激光与光电子学进展,2023,60(16):88−97.
HONG Yan, PANG Rong, WEI Qing, et al. Nonlinear adaptive enhancement algorithm for uneven illumination images[J]. Laser & Optoelectronics Progress, 2023, 60(16): 88−97.
|
[9] |
孟修建,乔欢欢,王雅,等. 改进AOD-Net的道路交通图像去雾算法[J]. 计算机系统应用,2024,33(1):206−212.
MENG Xiujian, QIAO Huanhuan, WANG Ya, et al. Improved AOD-Net algorithm for dehazing road traffic images[J]. Computer Systems & Applications, 2024, 33(1): 206−212.
|
[10] |
周筱雨,张栩豪,陈年,等. 图像增强算法综合对比评估[J]. 自动化应用,2023,64(20):154−159.
ZHOU Xiaoyu, ZHANG Xuhao, CHEN Nian, et al. Comprehensive contrast evaluation of the image enhancement algorithms[J]. Automation Application, 2023, 64(20): 154−159.
|
[11] |
WU H C, FAN W L, TSAI C S, et al. An image authentication and recovery system based on discrete wavelet transform and convolutional neural networks[J]. Multimedia Tools and Applications, 2021(1): 1−25.
|
[12] |
YANG W, WANG W, HUANG H, et al. Sparse gradient regularized deep Retinex network for robust low-light image enhancement[J]. IEEE Transactions on Image Processing, 2021, 30: 2072−2086. doi: 10.1109/TIP.2021.3050850
|
[13] |
周凯汀,郑力新. 非均匀光照图像双分量增强Retinex算法[J]. 电气电子教学学报,2023,45(5):227−230. doi: 10.3969/j.issn.1008-0686.2023.05.055
ZHOU Kaiting, ZHENG Lixin. Two components enhanced Retinex algorithm for uneven lighting images[J]. Journal of Electrical Education, 2023, 45(5): 227−230. doi: 10.3969/j.issn.1008-0686.2023.05.055
|
[14] |
王满利,张航,李佳悦,等. 基于深度神经网络的煤矿井下低光照图像增强算法[J]. 煤炭科学技术,2023,51(9):231−241. doi: 10.12438/cst.2022-1626
WANG Manli, ZHANG Hang, LI Jiayue, et al. Deep neural network-based image enhancement algorithm for low-illumination images underground coal mines[J]. Coal Science and Technology, 2023, 51(9): 231−241. doi: 10.12438/cst.2022-1626
|
[15] |
刘佳敏,何宁,尹晓杰. 基于Retinex-UNet算法的低照度图像增强[J]. 计算机工程与应用,2020,56(22):211−216. doi: 10.3778/j.issn.1002-8331.1910-0239
LIU Jiamin, HE Ning, YIN Xiaojie. Low illumination image enhancement based on Retinex-UNet algorithm[J]. Computer Engineering and Applications, 2020, 56(22): 211−216. doi: 10.3778/j.issn.1002-8331.1910-0239
|
[16] |
王瑞绅,宋公飞,王明. 引入ECA注意力机制的U-Net语义分割[J]. 电光与控制,2023,30(1):92−96. doi: 10.3969/j.issn.1671-637X.2023.01.016
WANG Ruishen, SONG Gongfei, WANG Ming. U-Net semantic segmentation with ECA attention mechanism[J]. Electronics Optics & Control, 2023, 30(1): 92−96. doi: 10.3969/j.issn.1671-637X.2023.01.016
|
[17] |
孙浩翔,翟江涛,万东东,等. 基于尺度特征提取的Retinex-net增强网络[J]. 国外电子测量技术,2023,42(9):74−83.
SUN Haoxiang, ZHAI Jiangtao, WAN Dongdong, et al. Retinex-net based on multi-scale feature extraction enhanced network[J]. Foreign Electronic Measurement Technology, 2023, 42(9): 74−83.
|
[18] |
李正龙,王宏伟,曹文艳,等. 基于含噪Retinex模型的煤矿低光照图像增强方法[J]. 工矿自动化,2023,49(4):70−77.
LI Zhenglong, WANG Hongwei, CAO Wenyan, et al. A method for enhancing low light images in coal mines based on Retinex model containing noise[J]. Journal of Mine Automation, 2023, 49(4): 70−77.
|
[19] |
陈林,毛经宇,刘坤,等. Zero-DCE网络的自适应损失函数改进[J]. 光电子·激光,2024,35(2):135−142.
CHEN Lin, MAO Jingyu, LIU Kun, et al. Improvement on the adaptive loss function for the Zero-DCE network[J]. Journal of Optoelectronics·Laser, 2024, 35(2): 135−142.
|
[20] |
陈清江,顾媛. 基于多尺度深度可分离卷积的低照度图像增强算法[J]. 计算机工程与科学,2023,45(10):1830−1837. doi: 10.3969/j.issn.1007-130X.2023.10.013
CHEN Qingjiang, GU Yuan. A low-light image enhancement algorithm based on multi-scale depthwise separable convolution[J]. Computer Engineering & Science, 2023, 45(10): 1830−1837. doi: 10.3969/j.issn.1007-130X.2023.10.013
|
[21] |
艾达,白岩松,于可欣,等. 全景图像质量评价方法最新进展[J]. 计算机工程与应用,2022,58(24):1−11. doi: 10.3778/j.issn.1002-8331.2206-0157
AI Da, BAI Yansong, YU Kexin, et al. Recent advances on panoramic image quality assessment methods[J]. Computer Engineering and Applications, 2022, 58(24): 1−11. doi: 10.3778/j.issn.1002-8331.2206-0157
|
[1] | TANG Junfei, XING Hailong, LI Su, ZHANG Taotao, LIU Heng, YAO Shiyu. Target detection technology of coal mine wheeled robot combining improved CNN and self attention mechanism[J]. Safety in Coal Mines, 2025, 56(3): 224-232. DOI: 10.13347/j.cnki.mkaq.20241414 |
[2] | GAO Yuan, LI Naiwen, NIU Lixia. Study on visual attention effect of safety signs under light and cognitive characteristics[J]. Safety in Coal Mines, 2024, 55(4): 251-256. DOI: 10.13347/j.cnki.mkaq.20231255 |
[3] | ZHAO Haifeng, ZHU Likai, LIU Changsong, ZHANG Xianfan. Prediction of coalbed methane well productivity based on attention mechanism of CNN-GRU[J]. Safety in Coal Mines, 2023, 54(12): 11-17. DOI: 10.13347/j.cnki.mkaq.2023.12.004 |
[4] | YANG Yage, SUN Linhui, DAI Zong, WU Shenglin. Research on visual attention effect of characteristics of coal mine safety signs[J]. Safety in Coal Mines, 2022, 53(3): 249-252. |
[5] | WANG Li, LIU Zhijun, LI Lei, YANG Shuai, QIN Shuting, ZHANG Shihao. Eye movement research on influence of attention distribution on coal mine safety monitoring behavior[J]. Safety in Coal Mines, 2022, 53(3): 243-248. |
[6] | LI Chunhe. Study on detection algorithm for miner dangerous behavior based on attention mechanism[J]. Safety in Coal Mines, 2021, 52(4): 260-264. |
[7] | XIE Hao, XIE Junsheng. Design of Mine Impact Resistance Slow Start Power Module[J]. Safety in Coal Mines, 2019, 50(9): 120-122. |
[8] | FENG Wenbin. Modulation Technology of Multi-gas Spectrum Line in Mine-used Spectral Equipment[J]. Safety in Coal Mines, 2015, 46(5): 117-120. |
[9] | YANG Xiaohui, YANG Bin, SONG Guodong, SONG Yongbao, HAN Xiuqi. Design of TD-SCDMA RF Module Applied in Coal Mine[J]. Safety in Coal Mines, 2015, 46(5): 109-110,113. |
[10] | JI Tianliang, WANG Wei, ZHANG Dong, LI Changlu. Design of Frequency Detection Module Based on ARM Processor and LM331[J]. Safety in Coal Mines, 2014, 45(6): 107-109,110. |