• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

逆断层区域煤体孔隙结构及瓦斯吸附解吸特征研究

周睿, 程晓之, 苏伟伟, 朱蕾

周睿, 程晓之, 苏伟伟, 朱蕾. 逆断层区域煤体孔隙结构及瓦斯吸附解吸特征研究[J]. 煤矿安全, 2021, 52(9): 22-28.
引用本文: 周睿, 程晓之, 苏伟伟, 朱蕾. 逆断层区域煤体孔隙结构及瓦斯吸附解吸特征研究[J]. 煤矿安全, 2021, 52(9): 22-28.
ZHOU Rui, CHENG Xiaozhi, SU Weiwei, ZHU Lei. Study on pore structure and gas adsorption and desorption characteristics of coal in reverse fault area[J]. Safety in Coal Mines, 2021, 52(9): 22-28.
Citation: ZHOU Rui, CHENG Xiaozhi, SU Weiwei, ZHU Lei. Study on pore structure and gas adsorption and desorption characteristics of coal in reverse fault area[J]. Safety in Coal Mines, 2021, 52(9): 22-28.

逆断层区域煤体孔隙结构及瓦斯吸附解吸特征研究

Study on pore structure and gas adsorption and desorption characteristics of coal in reverse fault area

  • 摘要: 为了研究逆断层对煤体孔隙结构和瓦斯吸附解吸特征的影响,以贵州新春煤矿1503回采工作面为研究对象,选取与逆断层不同距离煤体煤样分别开展扫描电镜试验低温液氮吸附试验,得出煤体距离逆断层越近,受逆断层构造影响越严重,煤样孔容、比表面积提高,在相对压力0.4~0.5的区域低温液氮吸附回归曲线内存在轻微的拐点,说明煤样中存在丰富的墨水瓶孔;通过研究与逆断层不同距离煤体瓦斯吸附解释规律,得出瓦斯解吸量均随着平衡压力的升高而增大,在相同解吸平衡压力下,距离逆断层最近的煤体结构被改造越强烈,瓦斯吸附性能相对最强,瓦斯吸附量和吸附速率越大,并且解吸能力也相对越强。
    Abstract: In order to study the influence of reverse fault on coal pore structure and gas adsorption and desorption characteristics, taking 1503 mining face of Xinchun Mine in Guizhou as the research object, the coal samples at different distances from the reverse fault are selected to carry out scanning electron microscope test and low-temperature liquid nitrogen adsorption test respectively. It is concluded that the closer the coal is to the reverse fault, the more seriously affected by the reverse fault structure, and the higher the pore volume and specific surface area of coal samples, in the region of relative pressure 0.4-0.5, there is a slight inflection point in the low-temperature liquid nitrogen adsorption regression curve, indicating that there are abundant ink bottle holes in the coal sample; by studying the gas adsorption interpretation law of coal at different distances from the reverse fault, it is concluded that the gas desorption capacity increases with the increase of equilibrium pressure. Under the same desorption equilibrium pressure, the stronger the coal structure closest to the reverse fault is transformed, the stronger the gas adsorption performance is, the greater the gas adsorption capacity and adsorption rate are, and the stronger the desorption capacity is.
  • [1] 张子敏.瓦斯地质学[M].徐州:中国矿业大学出版社,2009.
    [2] 杨孟达.煤矿地质学[M].北京:煤炭工业出版社,2006.
    [3] 郭晨,夏玉成,孙学阳,等.高瓦斯矿井采煤工作面瓦斯地质分级评价方法与实践[J].煤炭学报,2019,44(8):2409-2418.

    GUO Chen, XIA Yucheng, SUN Xueyang, et al. Method and practice of gas geological grading evaluation on coal mining face of high gas mine[J]. Journal of China Coal Society, 2019, 44(8): 2409-2418.

    [4] 蔺亚兵,秦勇,王兴,等.彬长低阶煤高瓦斯矿区瓦斯地质及其涌出特征[J].煤炭学报,2019,44(7):2151.

    LIN Yabing, QIN Yong, WANG Xing, et al. Geology and emission of mine gas in Binchang Mining Area with low rank coal and high mine gas[J]. Journal of China Coal Society, 2019, 44(7): 2151.

    [5] Yuanhui Li, Rui Zhou. Analysis of mechanical characteristics and instability law of fault under the influence of mining[J]. Earth Sciences Research Journal, 2018, 22(2): 139-144.
    [6] Sueleyman Dalgic. Tunneling in fault zones, Tuzla tunnel, Turkey[J]. Tunneling and Underground Space Technology, 2003, 18(5): 453-465.
    [7] 贾天让,王蔚,张子敏,等.现代构造应力场下断层走向对瓦斯突出的影响[J].采矿与安全工程学报,2013, 30(6):930-934.

    JIA Tianrang, WANG Wei, ZHANG Zimin, et al. Influence of fault strike on gas outburst under modern tectonic stress field[J]. Journal of Mining & Safety Engineering, 2013, 30(6): 263-268.

    [8] 雷光伟,杨春和,王贵宾,等.断层影响带的发育规律及其力学成因[J].岩石力学与工程学报,2016,35(2):231-241.

    LEI Guangwei, YANG Chunhe, WANG Guibin, et al. The development law and mechanical causes of fault influenced zone[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 231-241.

    [9] 王捷帆,李文俊.中国煤矿事故暨专家点评集[M].北京:煤炭工业出版社,2002.
    [10] 魏国营,王保军,闫江伟,等.平顶山八矿突出煤层瓦斯地质控制特征[J].煤炭学报,2015,40(3):555.

    WEI Guoying, WANG Baojun, YAN Jiangwei, et al. Gas geological control characteristics of outbursts coal seam in Pingdingshan No.8 Mine[J]. Journal of China Coal Society, 2015, 40(3): 555.

    [11] 张永将.淮南矿区煤与瓦斯动力灾害特征及规律分析[J].矿业安全与环保,2011,38(2):60-62.

    ZHANG Yongjiang. Characteristics of coal and gas dynamic disasters in Huainan Mining Area law analysis[J]. Mining Safety and Environmental Protection, 2011, 38(2): 60-62.

    [12] 杨荣丰,刘新华,曹运江,等.影响红卫矿区煤与瓦斯突出的地质因素浅析[J].煤炭科学技术,2006,34(11):72-74.

    YANG Rongfeng, LIU Xinhua, CAO Yunjiang, et al. Brief analysis on geological factors of coal and gas outburst in Hongwei Mining Area[J].Coal Science and Technology, 2006, 34(11): 72-74.

    [13] 汤政,姜波,宋昱,等.宿县矿区构造煤压缩特性及孔隙结构分形特征研究[J].煤炭科学技术,2017,45(12):174-181.

    TANG Zheng, JIANG Bo, SONG Yu, et al. Study on compression characteristics and pore structural fractal feature of structure coal in Suxian Mining Area[J]. Coal Science and Technology, 2017, 45(12): 174-181.

    [14] 李希建,沈仲辉,刘钰,等.黔西北构造煤与原生结构煤孔隙结构对吸解特性影响实验研究[J].采矿与安全工程学报,2017,34(1):170-176.

    LI Xijian, SHEN Zhonghui, LIU Yu, et al. The experi mental research on the impact of pore structure in tectonic coal and primary structure coal on gas adsorption desorption characteristics in northwestern Guizhou[J]. Journal of Mining & Safety Engineering, 2017, 34(1): 170-176.

    [15] 张逸斌,齐庆杰,张浪,等.煤体结构对瓦斯解吸放散特征影响试验研究[J].中国安全生产科学技术,2018,14(6):103-107.

    ZHANG Yibin, QI Qingjie, ZHANG Lang. et al. Experimental study on influence of coal structure on gas desorption and emission characteristics[J]. Journal of Safety Science and Technology, 2017, 34(1): 170-176.

    [16] 李阳,张玉贵,张浪,等.基于压汞、低温N2吸附和CO2吸附的构造煤孔隙结构表征[J].煤炭学报,2019, 44(4):1188-1196.

    LI Yang, ZHANG Yugui, ZHANG Lang, et al. Characterization on pore structure of tectonic coals based on the method of mercury intrusion, carbon dioxide adsorption and nitrogen adsorption[J]. Journal of China Coal Society, 2019, 44(4): 1188-1196.

    [17] 降文萍,宋孝忠,钟玲文.基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响[J].煤炭学报,2011,36(4):609.

    JIANG Wenping, SONG Xiaozhong, ZHONG Lingwen. Research on the pore properties of different coal body structure coals and the effects on gas outburst based on the low-temperature nitrogen adsorption method[J]. Journal of China Coal Society, 2011, 36(4): 609.

    [18] 张妙逢,贾茜.构造变形对煤储层孔隙结构与比表面积的影响研究[J].中国煤炭地质,2013,25(7):1.

    ZHANG Miaofeng, JIA Qian. Impacts from tectonic deformation on coal reservoir pore geometry and specific surface[J]. Coal Geology of China, 2013(7): 1.

    [19] 孟召平,刘珊珊,王保玉,等.不同煤体结构煤的吸附性能及其孔隙结构特征[J].煤炭学报,2015,40(8):1865-1870.

    MENG Zhaoping, LIU Shanshan, WANG Baoyu, et al. Adsorption capacity and its pore structure of coals with different coal body structure[J]. Journal of China Coal Society, 2015, 40(8): 1865-1870.

    [20] 陈卓,雷东记,张玉贵.构造煤纳米级孔隙对瓦斯吸附能力的影响研究[J].煤矿安全,2019,50(3):1-4.

    CHEN Zhuo, LEI Shuji, ZHANG Yugui, et al. Study on influence of nanoscale pores of tectonic coal on gas adsorption capacity[J]. Safety in Coal Mines, 2019, 50(3): 1-4.

  • 期刊类型引用(15)

    1. 王春光,兰树员,陶柱,丛海鹏,蒋名星,贾雪刚,凡永鹏. 低渗煤层瓦斯抽采顺层钻孔水力造穴卸压增透效果研究. 煤炭技术. 2024(02): 159-165 . 百度学术
    2. 石光. 马堡煤业高压水力压裂冲孔工业试验分析. 煤. 2024(03): 1-4+30 . 百度学术
    3. 谷保泽. 五虎山煤矿水力造穴增透物理模拟及钻孔优化设计. 煤矿安全. 2024(07): 15-21 . 本站查看
    4. 闫志铭,张新生,张军胜,杨百舸,曹运兴,李淑敏,董润平. 造穴-CO_2气相压裂复合技术造缝卸压增渗机理研究. 煤炭科学技术. 2024(08): 63-73 . 百度学术
    5. 李定启,张浩海. 五阳煤矿松软煤层定向水射流卸压增透技术研究. 矿业研究与开发. 2024(09): 116-122 . 百度学术
    6. 张玉浩,杨永康,王晨龙. 碎软煤层顶板水力压裂多裂缝穿层扩展规律研究. 煤矿安全. 2024(12): 63-71 . 本站查看
    7. 王珂,袁浩,刘红威,戎彦龙. 低温冷冲击饱水对煤体渗流性质的影响及增透试验研究. 煤矿安全. 2024(12): 90-96 . 本站查看
    8. 倪兴. 叠加效应下多孔水力割缝联合抽采参数优化研究. 工矿自动化. 2023(01): 146-152 . 百度学术
    9. 史广山,魏风清,高吾斌. 基于空气脉冲循环作用的抽采钻孔增透技术研究. 煤炭技术. 2023(03): 207-210 . 百度学术
    10. 张露露,李潞渊,张润旭. 超高压磨料水射流工艺参数优化实验研究. 煤矿安全. 2023(06): 27-33 . 本站查看
    11. 刘松. 松软低透煤层水力造穴诱导瓦斯喷孔技术工程实践. 能源与环境. 2023(04): 53-56 . 百度学术
    12. 武亚男. 顺层钻孔机械造穴增透技术及现场应用研究. 煤. 2023(11): 67-70 . 百度学术
    13. 王世斌,王刚,陈雪畅,范酒源,迟利辉. 基于PFC~(2D)-COMSOL的煤层水力压裂增透促抽瓦斯数值模拟研究. 煤矿安全. 2022(10): 132-140 . 本站查看
    14. 徐洪涛,刘锋. 高压水致裂技术在高瓦斯低渗煤层中的增透效果研究. 内蒙古煤炭经济. 2022(24): 1-3 . 百度学术
    15. 郭慧元,刘锋. 煤矿井下移动瓦斯抽采技术设计研究. 内蒙古煤炭经济. 2022(24): 34-36 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  23
  • HTML全文浏览量:  0
  • PDF下载量:  28
  • 被引次数: 15
出版历程
  • 发布日期:  2021-09-19

目录

    /

    返回文章
    返回