• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
Construction of mine intelligent ventilation and prevention system and information platform for Zhuanlongwan Coal Mine[J]. Safety in Coal Mines, 2022, 53(9): 212-220.
Citation: Construction of mine intelligent ventilation and prevention system and information platform for Zhuanlongwan Coal Mine[J]. Safety in Coal Mines, 2022, 53(9): 212-220.

Construction of mine intelligent ventilation and prevention system and information platform for Zhuanlongwan Coal Mine

More Information
  • Published Date: September 19, 2022
  • This paper discusses the construction method of ventilation and prevention system based on the application practice of Zhuanlongwan Coal Mine. A precise perception technology for key parameters of ventilation network is proposed. Through the optimal arrangement of sensors and the use of the least monitoring points, the correlation parameter analysis of the whole mine ventilation resistance route is achieved; the remote software modules of the main ventilator, local ventilator, and ventilation facilities are developed by extracting the ventilation and prevention information of the safety monitoring system, and the modules such as beam pipe monitoring, dust monitoring, grouting monitoring, and personnel positioning system are integrated; the intelligent analysis technology for the state of the ventilation and prevention system is proposed, and the three-dimensional simulation model of the mine ventilation network is established, which achieves the real-time calculation of the ventilation network, the visual display and trend analysis of the ventilation and prevention parameters, and the diagnosis and early warning of ventilation anomalies. By organically integrating ventilation, gas, fire, dust and other ventilation and prevention safety information, a hierarchical management and control mode of mine ventilation and prevention system based on multi heterogeneous information integration is proposed, a mine intelligent ventilation and prevention platform is developed, and mine emergency management and control platform is invented. Through field practice, the relevant parameter judgment and control model are verified, which provides application experience for the construction of mine intelligent ventilation and prevention system.
  • [1]
    王国法,杜毅博,任怀伟,等.智能化煤矿顶层设计研究与实践[J].煤炭学报,2020,45(6):1909-1924.

    WANG Guofa, DU Yibo, REN Huaiwei, et al. Top level design and practice of smart coal mines[J]. Journal of China Coal Society, 2020, 45(6): 1909-1924.
    [2]
    王国法.煤矿智能化最新技术进展与问题探讨[J].煤炭科学技术,2022,50(1):1-7.

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology, 2022, 50(1): 1-7.
    [3]
    张庆华,姚亚虎,赵吉玉.我国矿井通风技术现状及智能化发展展望[J].煤炭科学技术,2020,48(2):97.

    ZHANG Qinghua, YAO Yahu, ZHAO Jiyu. Status of mine ventilation technology in China and prospects for intelligent development[J]. Coal Science and Technology, 2020, 48(2): 97.
    [4]
    卢新明,尹红.矿井通风智能化理论与技术[J].煤炭学报,2020,45(6):2236-2247.

    LU Xinming, YIN Hong. The intelligent theory and technology of mine ventilation[J]. Journal of China Coal Society, 2020, 45(6): 2236-2247.
    [5]
    周福宝,魏连江,夏同强,等.矿井智能通风原理、关键技术及其初步实现[J].煤炭学报,2020,45(6):2225.

    ZHOU Fubao, WEI Lianjiang, XIA Tongqiang, et al. Principle, key technology and preliminary realization of mine intelligent ventilation[J]. Journal of China Coal Society, 2020, 45(6): 2225.
    [6]
    王斌,刘遵利,王永宝,等.王楼煤矿通风智能决策与远程控制系统研究[J].煤炭技术,2018,37(8):161.

    WANG Bin, LIU Zunli, WANG Yongbao, et al. Research on intelligent ventilation decision and remote control system in Wanglou coal mine[J]. Coal Technology, 2018, 37(8): 161.
    [7]
    R Fair, J H van Laar, K Nell, et al. Simulating the sensitivity of underground ventilation networks to fluctuation ambient conditions[J]. South African Journal of Industrial Engineering, 2021, 32(3): 42-51.
    [8]
    易欣,吴奉亮,王振平,等.基于全风网的矿井风温预测方法研究[J].煤炭工程,2017,49(2):89-92.

    YI Xin, WU Fengliang, WANG Zhenping, et al. Mine airflow temperature prediction method based on whole ventilation network[J]. Coal Engineering, 2017, 49(2): 89-92.
    [9]
    吴奉亮,高亚超,常心坦.矿井风网与采空区流场边界耦合模型与求解技术[J].中南大学学报(自然科学版),2020,51(8):2233-2242.

    WU Fengliang, GAO Yachao, CHANG Xintan. Boundary coupling model and solution technology of mine ventilation network and gob flow filed[J]. Journal of Central South University(Science and Technology), 2020, 51(8): 2233-2242.
    [10]
    朱华新,魏连江,张飞,等.矿井通风可视化仿真系统的改进研究[J].采矿与安全工程学报,2009,26 (3):327-331.

    ZHU Huaxin, WEI Lianjiang, ZHANG Fei, et al. Improvement of the visual simulation of mine ventilation system[J]. Journal of Mining & Safety Engineering, 2009, 26(3): 327-331.
    [11]
    陈开岩,周福宝,夏同强,等.基于空气状态参数与风量耦合迭代的风网解算方法[J].中国矿业大学学报,2021, 50(4):613-623.

    CHEN Kaiyan, ZHOU Fubao, XIA Tongqiang, et al. Ventilation network solution method based on coupling iteration of air state parameters and air quantity[J]. Journal of China University of Mining & Technology, 2021, 50(4): 613-623.
    [12]
    刘剑,尹昌胜,黄德,等.矿井通风阻变型故障复合特征无监督机器学习模型[J].煤炭学报,2020,45(9):3157-3165.

    LIU Jian, YIN Changsheng, HUANG De, et al. Unsupervised machine learning model for resistance variant fault diagnosis of mine ventilation system with composite features[J]. Journal of China Coal Society, 2020, 45(9): 3157-3165.
    [13]
    刘剑,郭欣,邓立军,等.基于风量特征的矿井通风系统阻变型单故障源诊断[J].煤炭学报,2018,43(1):143-149.

    LIU Jian, GUO Xin, DENG Lijun, et al. Resistance variant single fault source diagnosis of mine ventilation system based on air volume characteristic[J]. Journal of China Coal Society, 2018, 43(1): 143-149.
    [14]
    张卅卅,任高峰,张聪瑞,等.深部开采矿井通风智能感知及风机远程集中安全监控系统[J].武汉理工大学学报,2015,37(1):104-108.

    ZHANG Sasa, REN Gaofeng, ZHANG Congrui, et al.Intellisense and remote centralized security monitoring system for the ventilation system in deep mining[J]. Journal of WuHan University of technology, 2015, 37(1): 104-108.
    [15]
    Kai Wang, Shuguang Jiang, Xiaoping Ma, et al. Information fusion of plume control and personnel escape during the emergency rescue of external-caused fire in a coal mine[J]. Process Safety and Environmental Protection, 2016, 103: 46-59.
    [16]
    童兴,原帅琪,方伟鹏,等.基于Dijkstra算法的矿井最佳避灾路线分类求取[J].工矿自动化,2018,44(4):94-99.

    TONG Xing, YUAN Shuaiqi, FANG Weipeng, et al. Classification and calculation of the best escape route of coal mine based on Dijkstra algorithm[J]. Industry and Mine Automation, 2018, 44(4): 94-99.
    [17]
    周爱桃,胡嘉英,王凯,等.突出灾变后瓦斯风压诱致风流振荡机理研究[J].工矿自动化,2021,47(9):32.

    ZHOU Aitao, HU Jiaying, WANG Kai, et al. Study on the mechanism of gas wind pressure induced wind flow oscillation after outburst disaster[J]. Industry and Mine Automation, 2021, 47(9): 32-37.
    [18]
    李翠平,李仲学,曹志国,等.地下矿复合场的一体化构模及三维可视化[J].北京科技大学学报,2012,34(7):744-749.

    LI Cuiping, LI Zhongxue, CAO Zhiguo, et al. Holistic modeling and three-dimensional visualization of complex fields for underground mines[J]. Journal of University of Science and Technology Beijing, 2012, 34(7): 744-749.
  • Related Articles

    [1]LIU Xiaojun, WANG Fei, CAI Dong, ZHANG Shiming. Coal mine emergency guidance and information release system based on self-diagnostic LED display screen[J]. Safety in Coal Mines, 2025, 56(2): 242-248. DOI: 10.13347/j.cnki.mkaq.20240492
    [2]Emergency control technology of air and smoke flow in mine belt roadway fire based on Ventsim software[J]. Safety in Coal Mines, 2022, 53(9): 38-46.
    [3]ZOU Dedong, WU Jing. An intelligent information guidance and release terminal with emergency linkage function[J]. Safety in Coal Mines, 2022, 53(8): 124-128.
    [4]CHEN Jie. Architecture and key technology of coal mine artificial intelligence video analysis system[J]. Safety in Coal Mines, 2022, 53(6): 108-112.
    [5]CHEN Jie. Research on multi-system underground integration and emergency linkage technology for smart mine safety prevention and control[J]. Safety in Coal Mines, 2022, 53(5): 99-105.
    [6]CHEN Jie. Research on intelligent coal mine management and control integrated platform system[J]. Safety in Coal Mines, 2022, 53(4): 129-134.
    [7]YANG Meng, ZHOU Enbo. Design and Key Technologies for Coal Mine Intelligent Emergency Plan Generation System[J]. Safety in Coal Mines, 2018, 49(7): 96-98.
    [8]ZHU Fangming, YU Liang, YANG Yong. Application of Intelligent Explosion-proof Emergency Air Door System in Outburst Coal[J]. Safety in Coal Mines, 2016, 47(2): 102-105.
    [9]MENG Jijian, LIU Yu. Optimization Deployment of Underground Emergent Communication System Based on Topology Control[J]. Safety in Coal Mines, 2014, 45(11): 91-94.
    [10]HU Liming, JIANG Shuguang, SHAO Hao, WANG Kai, PEI Xiaodong, LIU Tao. Ventilation Network Stability Control and Disaster Emergency Control System[J]. Safety in Coal Mines, 2014, 45(3): 98-100.
  • Cited by

    Periodical cited type(14)

    1. 徐晓燕,张龙宝,张金锋. 煤矿通防事故隐患监控预警与应急处理体系. 内蒙古煤炭经济. 2025(01): 109-111 .
    2. 彭宝山,孙剑锋,宗广存,张立勇,高振华. 基于智能化GIS平台的矿井通防预警系统设计. 煤炭技术. 2025(03): 244-247 .
    3. 付伟,李静. 东滩煤矿智能化通风建设及应用. 煤矿现代化. 2024(03): 73-79 .
    4. 郭翔,刘大可,张浩强. 帕鲁特金矿通风在线监测系统建设与优化. 中国新技术新产品. 2024(17): 106-108 .
    5. 毛灯广,孙建国. 智能通风系统在矿井火灾防控中的应用研究. 内蒙古煤炭经济. 2024(18): 139-141 .
    6. 周福宝,辛海会,魏连江,时国庆,夏同强. 矿井智能通风理论与技术研究进展. 煤炭科学技术. 2023(01): 313-328 .
    7. 韦跃辉. 矿区智能化综合管控平台架构的设计. 电子技术. 2023(06): 224-225 .
    8. 曹其嘉,陈辉,韦钊,杨博飞. 基于智能算法矿井多因素监测预警平台研究. 煤炭技术. 2023(10): 150-152 .
    9. 汤威. 矿井智能化通防系统和信息化平台的应用. 矿业装备. 2023(09): 134-135 .
    10. 王耀. 基于5G工业互联网的井工煤矿信息化技术研究. 工矿自动化. 2023(S1): 29-31 .
    11. 高旗. 5G技术在煤矿智能化中的应用前景. 内蒙古煤炭经济. 2023(18): 136-138 .
    12. 卫桢. 煤矿通风系统智能化改造研究. 煤矿机械. 2023(12): 118-121 .
    13. 高忠国,温国惠,高建新,刘馨,侯泽民. 基于云平台的矿井智能通风监测与控制系统设计. 矿山机械. 2023(11): 64-70 .
    14. 于世勇. 煤矿用空压机智能群控节能控制系统的应用研究. 内蒙古煤炭经济. 2022(21): 21-23 .

    Other cited types(1)

Catalog

    Article views (254) PDF downloads (36) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return