• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
WANG Zhenping, YAN Zhenguo, YUE Ning, WANG Weifeng, XIAO Yang. Research on intelligent control system of “one ventilation and three prevention” in coal mines[J]. Safety in Coal Mines, 2022, 53(9): 193-197.
Citation: WANG Zhenping, YAN Zhenguo, YUE Ning, WANG Weifeng, XIAO Yang. Research on intelligent control system of “one ventilation and three prevention” in coal mines[J]. Safety in Coal Mines, 2022, 53(9): 193-197.

Research on intelligent control system of “one ventilation and three prevention” in coal mines

More Information
  • Published Date: September 19, 2022
  • In view of the difficulty of professional management of “one ventilation and three prevention” to meet the demand of daily intelligent control of mine, the paper proposes to build an intelligent control system for one ventilation and three prevention in mines. Based on the core technologies of Internet of Things, big data, information technology and computer intelligent algorithm, the intelligent control system is established, and a collaborative operation mode with Internet of Things and computer intelligent algorithm is built. Based on this, the intelligent control system of “one ventilation and three prevention” is developed, the main functions of the system include intelligent optimization analysis and assistant decision of mine ventilation network, intelligent control of mine dust, gas analysis early warning and intelligent control, coal spontaneous combustion monitoring and early warning and intelligent control as well as mine external fire monitoring and early warning and intelligent control. The intelligent system integrates monitoring, analysis, decision-making and control, and realizes intelligent control of “one ventilation and three prevention” in mines, which can effectively ensure mine safety and provide important technical support for the intelligent construction of coal mines.
  • [1]
    周福宝,魏连江,夏同强,等.矿井智能通风原理、关键技术及其初步实现[J].煤炭学报,2020,45(6):2225.

    ZHOU Fubao, WEI Lianjiang, XIA Tongqiang, et al. Principle, key technology and preliminary realization of mine intelligent ventilation[J]. Journal of China Coal Society, 2020, 45(6): 2225-2235.
    [2]
    王国法,王虹,任怀伟,等.智慧煤矿2025情景目标和发展路径[J].煤炭学报,2018,43(2):295-305.

    WANG Guofa, WANG Hong, REN Huaiwei, et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society, 2018, 43(2): 295.
    [3]
    魏连江,康家康,宋小林,等.矿井通风难易程度评价指标及分级方法[J].中国矿业大学学报,2021,50(4):649-657.

    WEI Lianjiang, KANG Jiakang, SONG Xiaolin, et al. Evaluation index and classification method of mine ventilation difficulty[J]. Journal of China University of Mining & Technology, 2021, 50(4): 649-657.
    [4]
    刘清江.“一通三防”重在通风的分析与探索[J].煤炭技术,2009,28(9):192-193.

    LIU Qingjiang. “One ventilation and theer-prevention” focus on analysis of ventilation and exploration[J]. Coal Technology, 2009, 28(9): 192-193.
    [5]
    魏连江,周福宝,梁伟,等.矿井通风网络特征参数关联性研究[J].煤炭学报,2016,41(7):1728-1734.

    WEI Lianjiang, ZHOU Fubao, LIANG Wei, et al. Correlation of mine ventilation network characteristic parameters[J]. Journal of China Coal Society, 2016, 41(7): 1728-1734.
    [6]
    刘剑.矿井智能通风关键科学技术问题综述[J].煤矿安全,2020,51(10):108-111.

    LIU Jian. Overview on key scientific and technical issues of mine intelligent ventilation[J]. Safety in Coal Mines, 2020, 51(10): 108-111.
    [7]
    贾澎涛,孙涛,常心坦.WebGIS控件在矿井通风中的应用[J].工矿自动化,2005(6):38-40.

    JIA Pengtao, SUN Tao, CHANG Xintan. The application of WebGIS control component in mine ventilation[J]. Industry and Mine Automation, 2005(6): 38-40.
    [8]
    刘泽功.计算机辅助分析矿井通风系统风流突变原因及确定事故发生位置[J].淮南矿业学院学报,1996(3):35-40.

    LIU Zegong. Computer-aided analysis of mine air-flow catastrophes and detrmination of accident locations[J]. Journal of Huainan Mining Institute, 1996(3): 35-40.
    [9]
    周平,王德明,周福宝.矿井通风管理系统的可视化设计与应用[J].煤矿安全,2003(5):18-20.

    ZHOU Ping, WANG Deming, ZHOU Fubao. Visualization design of mine ventilation management system and application[J]. Safety in Coal Mines, 2003(5): 18-20.
    [10]
    倪景峰,刘剑,贾进章.矿井通风系统可视化程序设计原理[J].辽宁工程技术大学学报(自然科学版),2003(4):527.

    NI Jingfeng, LIU Jian, JIA Jinping. Program design theory of mine ventilation visualization[J]. Journal of Liaoning Technical University(Natural Science Edition), 2003(4): 527.
    [11]
    关联合,郭兵,魏孝平,等.煤矿“一通三防”技术概况及智能化应用[J].内蒙古煤炭经济,2021(16):132.
    [12]
    杨健健,张强,王超,等.煤矿掘进机的机器人化研究现状与发展[J].煤炭学报,2020,45(8):2995-3005.

    YANG Jianjian, ZHANG Qiang, WANG Chao, et al. Status and development of robotization research on roadheader for coal mines[J]. Journal of China Coal Society, 2020, 45(8): 2995-3005.
    [13]
    赵胜贵,周建.智能机器人在煤矿一通三防专业中的应用[J].内蒙古煤炭经济,2019(19):35-36.
  • Related Articles

    [1]LIU Feng. Prediction of gas emission based on PCA-SAPSO-BP neural network[J]. Safety in Coal Mines, 2023, 54(4): 60-68.
    [2]ZHAO Wei, CHEN Peihong, CAO Yang. Prediction model of coal seam gas content based on ACSOA optimized BP neural network[J]. Safety in Coal Mines, 2022, 53(1): 174-180.
    [3]LIU Tuanjie, ZHAO Xiangzhuo, HAN Yongliang, LI Yunpeng, CHEN Xi. Strength prediction of solid wastes filling body based on GRA--BP neural network[J]. Safety in Coal Mines, 2021, 52(9): 231-238.
    [4]WANG Shenhao, XIE Wanli, XI Jiami, JING Xu. Prediction of mine collapse risk based on GIS and BP neural network[J]. Safety in Coal Mines, 2021, 52(9): 218-223,230.
    [5]ZHANG Fan, ZHONG Hao. Research on Mine Thermodynamic Disaster Monitoring Based on BP Neural Network[J]. Safety in Coal Mines, 2020, 51(11): 216-220.
    [6]XIE Lirong, WANG Jinrui, Mutellip Ahmat, LU Peng, NIU Yongchao. Prediction for Coal Mine Gas Emission Based on LVQ-GA-BP Neural Network[J]. Safety in Coal Mines, 2017, 48(12): 150-152,156.
    [7]LI Hongliang, HUA Xinzhu, ZHANG Zhonghao. Distribution Prediction of Advanced Abutment Pressure of Based on BP Neural Network Model[J]. Safety in Coal Mines, 2015, 46(2): 209-212.
    [8]PAN Bin, LI Yuan-long, GE Xiao-ming, LAI Chuan-long, CHEN Jing-can. Overlying Rock Movement BP Neural Networks Prediction Based on Orthogonal Experiment Design[J]. Safety in Coal Mines, 2013, 44(10): 209-211.
    [9]XU Dong-jing, SHI Long-qing, QIU Mei, SUN Qi, LIU Lei. Forecast of Small Structure for Mine Based on BP Neural Networks[J]. Safety in Coal Mines, 2013, 44(2): 50-52,56.
    [10]DAI Hong-lei, HAN Li-tao, CHEN Chuan-fa. Prediction Model of Gas Disaster Based on Quasi-Newton Algorithm BP Neural Network[J]. Safety in Coal Mines, 2012, 43(10): 11-14.
  • Cited by

    Periodical cited type(3)

    1. 李争荣,杨八九,冯兴隆,牛向东,赵明亮,侯克鹏,徐柱圆. 普朗铜矿出矿口封堵墙侧压力计算分析. 采矿技术. 2024(05): 150-156 .
    2. 韩东洋,张建忠,樊龙,王振兴,宋桂军. 综放工作面顺槽联巷密闭墙构建参数研究. 煤炭技术. 2024(12): 89-93 .
    3. 张建忠,黄克军,刘鑫,杨琛. 一种新型临时密闭墙材料. 机电一体化. 2021(04): 47-52 .

    Other cited types(2)

Catalog

    Article views (94) PDF downloads (61) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return