• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
QIU Shi, ZHANG Pingsong, HU Ze’an, LI Shenglin. Research progress and analysis of multi-data fusion technology for advanced detection of mine roadway[J]. Safety in Coal Mines, 2021, 52(7): 215-223.
Citation: QIU Shi, ZHANG Pingsong, HU Ze’an, LI Shenglin. Research progress and analysis of multi-data fusion technology for advanced detection of mine roadway[J]. Safety in Coal Mines, 2021, 52(7): 215-223.

Research progress and analysis of multi-data fusion technology for advanced detection of mine roadway

More Information
  • Published Date: July 19, 2021
  • Advanced detection of roadway in coal mine is an important prerequisite for safe mining of roadway. Multiple solutions and large range of abnormal detection are the problems that puzzle advanced detection of roadway, and the research and application of multi-data fusion technology for advanced detection of roadway can effectively solve such problems. The principle and types of data fusion are introduced, and the research progress of data fusion is discussed. Focusing on the advanced detection technology of coal mine roadway, this paper further analyzes the research progress and current situation of roadway multi-data fusion, and points out its existing problems and development direction, which provides ideas for different types of advanced detection data fusion application of roadway in the future.
  • [1]
    段天柱,赵洪月,胡运兵,等.煤矿掘进巷道地震反射波超前探测技术及应用[J].矿业安全与环保,2013, 40(2):80-82.

    DUAN Tianzhu, ZHAO Hongyue, HU Yunbing, et al. Advance detection technology with seismic reflection wave and its application in coal mine roadway excavation[J]. Mining Safety and Environmental Protection, 2013, 40(2): 80-82.
    [2]
    王雪涛.地质雷达探测技术在乌东煤矿的应用实践[J].煤炭科技,2016(4):92-95.
    [3]
    宋保陵,满立新,刘献科,等.基于槽波的煤矿地质构造超前探测技术研究[J].能源与环保,2017,39(8):87-91.

    SONG Baoling, MAN Lixin, LIU Xianke, et al. Study on advance detection technology of coal mine geological structure based on trough wave[J]. China Energy and Environmental Protection, 2017, 39(8): 87-91.
    [4]
    方杰,徐会军,孔广亚.基于地震反射波法的巷道空间地质异常体超前探测[J].煤矿开采,2015,20(4):28.

    FANG Jie, XU Huijun, KONG Guangya. Advanced exploration of space geological anomalous body in roadway based on seismic reflected wave method[J]. Coal Mining Technology, 2015, 20(4): 28.
    [5]
    孙伟,薛江,穆晓强.矿井瞬变电磁法在五家沟煤矿巷道超前预报中的应用研究[C]//煤炭绿色开发地质保障技术研究—陕西省煤炭学会学术年会暨第三届“绿色勘查科技论坛”论文集.北京:应急管理出版社,2019:425-433.
    [6]
    王恩营,李锐,刘仰光,等.井下直流电法超前探测低阻区水与瓦斯视电阻率响应分析[J].煤矿安全,2018,49(3):168-171.

    WANG Enying, LI Rui, LIU Yangguang, et al. Analysis of apparent resistivity response on water and gas in low resistivity zone by underground DC advance method[J]. Safety in Coal Mines, 2018, 49(3): 168-171.
    [7]
    段毅,许献磊.地质雷达超前探测在常村煤矿的应用研究[J].中国矿业,2017,26(8):150-153.

    DUAN Yi, XU Xianlei. Advanced detection application by using geological radar in changcun coal mine[J]. China Mining Magazine, 2017, 26(8): 150-153.
    [8]
    黄晓容.采用地震勘探法超前探测矿区隐伏导水构造[J].矿业安全与环保,2016,43(4):79-81.

    HUANG Xiaorong. Advance detection of mine concealed water flowing structure by seismic prospecting method[J]. Mining Safety and Environment Protection, 2016, 43(4): 79-81.
    [9]
    邢修举.综合物探方法在陷落柱探测中的应用[J].能源与环保,2018,40(4):134-137.

    XING Xiuju. Application of complex geophysical exploration in advanced detection of collapse column[J]. China Energy and Environmental Protection, 2018, 40(4): 134-137.
    [10]
    武毅刚.综合物探技术在矿井导水构造超前探测中的应用[J].能源与节能,2019(1):157-158.

    WU Yigang. Application of comprehensive geophysical exploration technology in advanced detection of mine water-conducting structure[J]. Energy and Energy Conservation, 2019(1): 157-158.
    [11]
    彭苏萍.我国煤矿安全高效开采地质保障系统研究现状及展望[J].煤炭学报,2020,45(7):2331-2345.

    PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society, 2020, 45(7): 2331-2345.
    [12]
    Douglas W Oldenburg, Yaoguo Li, Colin G Farquharson, et al. Applications of geophysical inversions in mineral exploration[J]. The Leading Edge, 1998, 17(4): 425-584.
    [13]
    Michael S Zhdanov. Geophysical Inverse Theory and Regularization Problems[M]. Amsterdam: Elsevier Science, 2002: 79-82.
    [14]
    Gyulai A, Baracza M k. What is joint inversion[J]. Magyar Geofizika, 2012, 53(4): 275-280.
    [15]
    Luis A Gallardo, Max A Meju. Characterisation of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data[J]. Geophysical Research Letters, 2003, 30(13): 1658-1664.
    [16]
    高级,张海江,方洪健,等.一种高效的基于交叉梯度结构约束的三维地震走时与直流电阻率联合反演策略[J].地球物理学报,2017,60(9):3628-3641.

    GAO Ji, ZHANG Haijiang, FANG Hongjian, et al. An efficient joint inversion strategy for 3D seismic travel time and DC resistivity data based on cross-gradient structure constraint[J]. Chinese Journal of Geophysics, 2017, 60(9): 3628-3641.
    [17]
    Wang Kun-Peng, Tan Han-Dong, Wang Tao. 2D joint inversion of CSAMT and magnetic data based on cross-gradient theory[J]. Applied Geophysics, 2017, 14(2): 279-290.
    [18]
    Yong-Chol Pak, Tonglin Li, Gang-Sop Kim. 2D data-space cross-gradient joint inversion of MT, gravity and magnetic data[J]. Journal of Applied Geophysics, 2017, 143: 212-222.
    [19]
    Shuang Liu, Xiangyun Hu, Rixiang Zhu. Joint inversion of surface and borehole magnetic data to prospect concealed orebodies: A case study from the Mengku iron deposit, northwestern China[J]. Journal of Applied Geophysics, 2018, 154: 150-158.
    [20]
    Albert Tarantola, Bernard Valette. Generalized nonlinear inverse problems solved using the least squares criterion[J]. Reviews of Geophysics, 1982, 20(2): 219-232.
    [21]
    王俊,孟小红,陈召曦,等.交叉梯度理论及其在地球物理联合反演中的应用[J].地球物理学进展,2013, 28(4):2094-2103.

    WANG Jun, MENG Xiaohong, CHEN Zhaoxi, et al. The theory of cross-gradient and its application in geophysical joint inversion[J]. Progress in Geophysics, 2013, 28(4): 2094-2103.
    [22]
    Luis A Gallardo, Max A Meju. Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints[J]. Journal of Geophysical Research, 2004, 109(3): B03311.
    [23]
    Gallardo, Luis A. Multiple cross-gradient joint inversion for geospectralimaging[J]. Geophysical Research Letters, 2007, 34(19): L19301.
    [24]
    Luis A Gallardo, Max A Meju. Structure-coupled multiphysics imaging in geophysical sciences[J]. Reviews of Geophysics, 2011, 49(1): RG1003.
    [25]
    薄鹏雷.基于交叉梯度约束条件波阻抗和电阻率联合反演研究[D].徐州:中国矿业大学,2018.
    [26]
    Zhanjie Shi, Richard W Hobbs, Max Moorkamp, et al. 3-D cross-gradient joint inversion of seismic refraction and DC resistivity data[J]. Journal of Applied Geophysics, 2017, 141: 54-67.
    [27]
    Ninfa L Bennington, Haijiang Zhang, Clifford H Thurber, et al. Joint Inversion of Seismic and Magnetotelluric Data in the Parkfield Region of California Using the Normalized Cross-Gradient Constraint[J]. Pure and Applied Geophysics, 2015, 172(5): 1033.
    [28]
    I.smail Demirci, ?譈nal Dikmen, M Emin Candansayar. Two-dimensional joint inversion of Magnetotelluric and local earthquake data: Discussion on the contribution to the solution of deep subsurface structures[J]. Physics of the Earth and Planetary Interiors, 2018, 275: 56-68.
    [29]
    齐嘉慧,冯晅,恩和得力海,等.基于交叉梯度耦合的大地电磁和地震联合反演[C]//2018年地球科学联合学术年会论文集.北京:中国和平音像电子出版社,2018:15-16.
    [30]
    陈晓红.基于交叉梯度函数的重震同步联合反演方法研究[D].青岛:中国石油大学(华东),2013.
    [31]
    赵杨.地震体波走时与重力联合反演研究及在南北地震带南段的应用[D].北京:中国地质大学(北京),2018.
    [32]
    Ari, Tryggvason, Niklas Linde. Local earthquake(LE) tomography with joint inversion for P- and S-wave velocities using structural constraints[J]. Geophysical Research Letters, 2006, 33(7): L07303.
    [33]
    傅磊,刘四新.基于交叉梯度约束的地震初至纵波与瑞雷面波联合反演[J].地球物理学报,2016,59(12):4464-4472.

    FU Lei, LIU Sixin. Joint inversion of first arrival P waves and Rayleigh waves based on cross-gradient constraint[J]. Chinese Journal of Geophysics, 2016, 59(12): 4464-4472.
    [34]
    Junjie Zhou, Xiaohong Meng, Lianghui Guo, et al. Three-dimensional cross-gradient joint inversion of gravity and normalized magnetic source strength data in the presence of remanent magnetization[J]. Journal of Applied Geophysics, 2015, 119: 51-60.
    [35]
    修春晓,孟小红,张盛.基于网格节点稀疏约束的重磁交叉梯度联合反演[C]//2017年地球科学联合学术年会论文集.北京:中国和平音像电子出版社,2017:7-10.
    [36]
    刘盛东,余森林,王勃,等.矿井巷道地震反射波超前探测波场处理方法研究[J].煤炭科学技术,2015,43(1):100-103.

    LIU Shengdong, YU Senlin, WANG Bo, et al. Study on processing method of seismic reflection wave field for advanced detection of mine gateway[J]. Coal Science and Technology, 2015, 43(1): 100-103.
    [37]
    刘彦杰.长距离多断层破碎带巷道超前探测关键技术[J].煤炭科学技术,2018,46(S2):199-205.

    LIU Yanjie. Key technology for advanced detection of roadway in long distance multi-fault fracture zone[J]. Coal Science and Technology, 2018, 46(S2): 199.
    [38]
    覃思,程建远.煤矿井下随采地震反射波勘探试验研究[J].煤炭科学技术,2015,43(1):116-119.

    QIN Si, CHENG Jianyuan. Experimental study on seismic while mining for underground coal mine reflection survey[J]. Coal Science and Technology, 2015, 43(1): 116-119.
    [39]
    程久龙,陈丁,薛国强,等.矿井瞬变电磁法超前探测合成孔径成像研究[J].地球物理学报,2016,59(2):731-738.

    CHENG Jiulong, CHEN Ding, XUE Guoqiang, et al. Synthetic aperture imaging in advanced detection of roadway using the mine transient electromagnetic method[J]. Chinese Journalof Geophysics, 2016, 59(2): 731-738.
    [40]
    许颢砾,王大庆,刘志新,等.地面-井下双源瞬变电磁立体探测模拟研究[J].地质与勘探,2018,54(3):603-613.

    XU Haoli, WANG Daqing, LIU Zhixin, et al. Numerical and physical simulation of surface-underground stereo probing by the transient electromagnetic method[J]. Geology and Exploration, 2018, 54(3): 603-613.
    [41]
    马炳镇,李貅.矿井直流电法超前探中巷道影响的数值模拟[J].煤田地质与勘探,2013,41(1):78-81.

    MA Bingzhen, LI Xiu. Roadway influences on advanced DC detection in underground mine[J]. Coal Geology and Exploration, 2013, 41(1): 78-81.
    [42]
    占文锋,武玉梁,李文.矿井直流电法全空间电场分布数值模拟及影响因素[J].煤田地质与勘探,2018, 46(1):139-147.

    ZHAN Wenfeng, WU Yuliang, LI Wen. Simulation and analysis of electric field distribution and its influence factors in coal mine direct current method[J]. Coal Geology & Exploration, 2018, 46(1): 139-147.
    [43]
    石学锋.矿井直流电法超前探测影响因素数值模拟[J].煤炭技术,2016,35(11):122-124.

    SHI Xuefeng. Numerical simulation of influencing factors in advance DC electric detection in coal mines[J]. Coal Technology, 2016, 35(11): 122-124.
    [44]
    韩德品,石学锋,石显新,等.煤矿老窑积水巷道直流电法超前探测异常特征研究[J].煤炭科学技术,2019,47(4):157-161.

    HAN Depin, SHI Xuefeng, SHI Xianxin, et al. Study on anomaly characteristics of in-advance DC electric detection of water-accumulated roadway in abandoned coal mines[J]. Coal Science and Technology, 2019, 47(4): 157-161.
    [45]
    宋劲.矿井防爆地质雷达关键技术研究[D].长沙:中南大学,2014.
    [46]
    张开伟,聂庆科,王世淼,等.基于矿井隧道施工地质雷达预报技术的应用研究[J].中国矿业,2017,26(S2):391-394.

    ZHANG Kaiwei, NIE Qingke, WANG Shimiao, et al. Application of mine geological radar forecast during tunnel construction[J]. China Mining Magazine, 2017, 26(S2): 391-394.
    [47]
    李冬,杜文凤,许献磊.矿井地质雷达超前探测方法及应用研究[J].煤炭科学技术,2018,46(7):223.

    LI Dong, DU Wenfeng, XU Xianlei. Study on advanced detection method and application of mine geological radar[J]. Coal Science and Technology, 2018, 46(7): 223.
    [48]
    李飞.掘进巷道直流电法与瞬变电磁超前探测联合反演研究[D].青岛:山东科技大学,2013.
    [49]
    李飞,刘德民,张景钢,等.基于最小二乘的矿井电法超前探测联合反演方法研究[J].煤矿安全,2014,45(6):41-44.

    LI Fei, LIU Demin, ZHANG Jinggang, et al. Study on mine advanced detection joint inversion method based on least squares[J]. Safety in Coal Mines, 2014, 45(6): 41-44.
    [50]
    李貅,刘文韬,智庆全,等.核磁共振与瞬变电磁三维联合解释方法[J].地球物理学报,2015(8):2730.

    LI Xiu, LIU Wentao, ZHI Qingquan, et al. Three-dimensional joint interpretation of nuclear magnetic resonance and transient electromagnetic data[J]. Chinese Journal of Geophysics, 2015, 58(8): 2730.
    [51]
    师素珍,孙超,魏文希,等.联合反演在煤层顶底板岩性预测中的应用[J].煤炭学报,2016,41(S2):338.

    SHI Suzhen, SUN Chao, WEI Wenxi, et al. Joint inversion in the application of coal seam roof and floor lithologic prediction[J]. Journal of China Coal Society, 2016, 41(S2): 338.
    [52]
    M DOBRóKA, á GYULAI, Ormos T, et al. Joint inversion of seismic and geoelectric data recorded in an underground coal mine[J]. Geophysical Prospecting, 1991, 39(5): 643-665.
    [53]
    李飞,程久龙,杨思通,等.矿井TEM与地震联合反演导水陷落柱的试验研究[J].煤炭学报,2020,45(7):2472-2481.

    LI Fei, CHENG Jiulong, YANG Sitong, et al. Experimental study on joint inversion of water conducted karstic collapse column based on mine TEM and seismic exploration[J]. Journal of China Coal Society, 2020, 45(7): 2472-2481.
  • Related Articles

    [1]LI Peng, QI Donghe, GENG Congji, WANG Chenggong, HUANG Gan, PAN Day, ZHANG Tongtong. Height of Water Flowing Fracture Zone Based on Strain Energy Failure Criterion[J]. Safety in Coal Mines, 2019, 50(10): 34-39.
    [2]HUANG Hao, FANG Gang, LIANG Xiangyang. Study on Development Height of Jurassic Water Flowing Fractured Zone of Deep Buried Coal Seam in Hujiert Mining Area[J]. Safety in Coal Mines, 2019, 50(10): 22-28.
    [3]HE Zhaoyu, QIAO Wei, REN Chunhui, XIE Jun, ZHAO Liantao. Mining Effect of Coal Beds and Red Strata Overlying Rock Structure and Numerical Simulation of Water Flowing Fractured Zone[J]. Safety in Coal Mines, 2018, 49(7): 175-180.
    [4]JIANG Ning, NING Jianguo, WANG Jun, WANG Jun. Simulation Study on Development Laws of Water Flowing Fractured Zone Under Different Angles of Lateral Pressure[J]. Safety in Coal Mines, 2018, 49(4): 38-41.
    [5]LIU Jing, LI Genwei. Multi-factor Influence Analysis of Water Conductivity Fractured Zone Height in Strip Filling Water Preserved Mining[J]. Safety in Coal Mines, 2018, 49(3): 194-197.
    [6]WANG Guohua, YIN Shangxian, LIU Ming, ZHANG Xiangwei. Height Prediction Methods of Water Flowing Fractured Zone Under Condition of Fully-mechanized Mining[J]. Safety in Coal Mines, 2017, 48(11): 187-190.
    [7]LI Li. Application of Numerical Simulation in Analyzing Water Flowing Fractured Zone in Coal[J]. Safety in Coal Mines, 2017, 48(10): 160-162,166.
    [8]XING Maolin, LI Wenping, YIN Jinghui. Study on Height Prediction of Water Flowing Fractured Zone Caused by Full-mechanized Caving Mining in Jurassic Coalfield[J]. Safety in Coal Mines, 2017, 48(9): 39-42.
    [9]YANG Qi, LI Xiaoqin, LI Wenping. Research on Development Height of Water Flowing Fractured Zone in Overlying Strata for Coal Mining in Mountain Area[J]. Safety in Coal Mines, 2016, 47(12): 31-34.
    [10]HU Hao, NING Jianguo, WANG Jun, LI Guangbo, SHI Xinshuai. Numerical Simulation on Height of Water Flowing Fractured Zone Development in Overlying Rocks Under Hard Roof Coal Seam Group Mining[J]. Safety in Coal Mines, 2016, 47(5): 45-48.

Catalog

    Article views (62) PDF downloads (23) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return