• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
JIANG Ning, NING Jianguo, WANG Jun, WANG Jun. Simulation Study on Development Laws of Water Flowing Fractured Zone Under Different Angles of Lateral Pressure[J]. Safety in Coal Mines, 2018, 49(4): 38-41.
Citation: JIANG Ning, NING Jianguo, WANG Jun, WANG Jun. Simulation Study on Development Laws of Water Flowing Fractured Zone Under Different Angles of Lateral Pressure[J]. Safety in Coal Mines, 2018, 49(4): 38-41.

Simulation Study on Development Laws of Water Flowing Fractured Zone Under Different Angles of Lateral Pressure

More Information
  • Published Date: April 19, 2018
  • Taking the 5302 working face of Xinhe Coal Mine in Shandong province as an engineering background, we use FLAC3D numerical simulation to study development law of water flowing fractured zone under different angles of lateral pressure (the angle between the horizontal stress and the advancing direction of the working face). Results showed that: when the lateral pressure coefficient is 0.5, 1.0 and 1.5, with the increase of the angle of lateral pressure, the plastic zone height of the overlying strata in the stope shows an upward trend as a whole, the plastic zone of overburden gradually develops from an arch into an irregular saddle shape; when the lateral pressure coefficient is 2.0 and 2.5, with the increase of the angle of lateral pressure, the height of plastic zone decreases firstly and then increases, the plastic zone of the overlying strata gradually develops from the arch to the pillow shape; with the increase of the angle of lateral pressure, different stress concentration zones can be formed at the top of the surrounding rock in the stope, the range of stress concentration zone will decrease first and then increase.
  • [1]
    李盟,王晓健.深部高水平应力下巷道布置最佳角度[J].煤炭技术,2017,36(1):56-58.
    [2]
    王军,宁建国,刘学生,等.构造应力下采场上覆岩层破坏规律数值模拟[J].煤矿安全,2017,48(1):183.
    [3]
    孙玉福.水平应力对巷道围岩稳定性的影响[J].煤炭学报,2010,35(6):891-895.
    [4]
    李义宝,康天合,柴肇云,等.水平应力对极近距离煤层回采巷道的影响分析[J].矿业研究与开发,2010,30(4):3-4,29.
    [5]
    刘玥.三台界矿区导水裂隙带发育高度预计与数值模拟[J].煤矿安全,2013,44(12):179-182.
    [6]
    刘学生,张明,宁建国,等.近浅埋煤层导水裂隙带发育高度影响因素的数值模拟[J].山东科技大学学报(自然科学版),2012,31(5):31-36.
    [7]
    田成林,宁建国,谭云亮,等.多次采动条件下浅埋覆岩裂隙带发育规律[J].煤矿安全,2014,45(11):45.
    [8]
    贺桂成,肖富国,张志军,等.康家湾矿含水层下采场导水裂隙带发育高度预测[J].采矿与安全工程学报,2011,28(1):122-126.
  • Related Articles

    [1]WANG Li, ZHANG Shihao, LI Lei, LI Guangli, ZHANG Qian. Development and application of miner safety rejection sensitivity scale[J]. Safety in Coal Mines, 2022, 53(4): 243-247.
    [2]MA Xiongwei, WANG Zhaofeng, YANG Tenglong, CHEN Jinsheng, LI Yanfei, XI Jie. Sensitivity analysis of main control factors for efficiency of submerged jet crushing coal containing gas[J]. Safety in Coal Mines, 2021, 52(11): 147-153.
    [3]GAO Jianan, WU Fengliang. Calculation and sensitivity analysis of convective heat transfer coefficient between roadway wall and airflow[J]. Safety in Coal Mines, 2021, 52(9): 211-217.
    [4]ZHANG Yaqi, PENG Wenqing. Sensitivity Analysis of Influence of Many Factors on Coal Permeability Under Non-isostatic Deviating Stress[J]. Safety in Coal Mines, 2020, 51(9): 16-19.
    [5]HOU Jifeng, LIU Hao. Sensitivity Study on Main Controlling Factors of Borehole Shrinkage for Expansive Mudstone in Coal Mine[J]. Safety in Coal Mines, 2018, 49(6): 20-23.
    [6]QIAO Kang. Sensitivity Analysis of Low Rank Coal Reservoir and Its Influence on Coalbed Methane Drainage[J]. Safety in Coal Mines, 2018, 49(5): 14-16,22.
    [7]LI Ke, ZHANG Jinhong. Sensitivity Analysis on Main Factors of Inclined Coal Floor Damage Depth[J]. Safety in Coal Mines, 2017, 48(5): 210-213.
    [8]AN Zhaofeng, LI Shugang, LIN Haifei, DING Yang, LI Li. Orthogonal Experiment on Sensitivity of Impact Factors in Coal Adsorbing Methane[J]. Safety in Coal Mines, 2015, 46(2): 1-4.
    [9]ZHANG Peng, DU Ze-sheng, LI Zhong-hui, MA Yan-kun, XUE Shi-peng, WEI Li-na. Sensitivity Analysis of Outburst Hazard Evaluation Index Based on Principal Component Analysis[J]. Safety in Coal Mines, 2012, 43(4): 1-4.
    [10]CHOU Hai-sheng. Sensitivity Analysis of Effect Inspection Index for Working Face Outburst Prevention[J]. Safety in Coal Mines, 2012, 43(1): 83-85.
  • Cited by

    Periodical cited type(9)

    1. 吴晓春. 精确人员定位感应一体化识别卡的设计与实现. 化工自动化及仪表. 2025(02): 259-263+268 .
    2. 胡亮. 基于电力载波通信的精确定位读卡器设计. 化工自动化及仪表. 2025(02): 283-288 .
    3. 戴剑波. 基于国产芯片的矿车车皮精确定位标识卡. 煤矿安全. 2024(11): 222-226 . 本站查看
    4. 温贤培. 煤矿现场人员二维精确定位方法. 煤矿安全. 2023(01): 225-229 . 本站查看
    5. 樊启祥,林鹏,谢亮,刘元达,朱强,李果,辜斌,魏鹏程. 水电工程复杂场景施工资源定位管理技术研究. 水力发电学报. 2022(02): 113-124 .
    6. 陈杰. 智慧矿山安全防控多系统井下融合与应急联动技术研究. 煤矿安全. 2022(05): 99-105 . 本站查看
    7. 王恒晓. 基于多源数据融合的煤矿安全态势感知分析平台研究. 煤矿安全. 2022(08): 242-246 . 本站查看
    8. 张鹏,周代勇. 基于UWB的洗煤厂定位方法研究. 自动化与仪器仪表. 2022(08): 130-132+137 .
    9. 白怡明,曾祥玉,李杰,辛凤阳,郭晓松,朱金龙. 基于卡尔曼滤波算法的UWB+IMU组合精确定位系统在选煤厂中的应用. 选煤技术. 2022(05): 85-90 .

    Other cited types(0)

Catalog

    Article views (166) PDF downloads (0) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return