• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
LI Wen, WANG Guanghong, OU Cong, LI Shourui, LI Xiangwang, ZHAO Huajun, LIU Jianhua, ZHAO Bi. Numerical simulation and engineering application of comb-shaped directional long borehole hydraulic fracturing under different arrangement of holes[J]. Safety in Coal Mines, 2021, 52(5): 72-77.
Citation: LI Wen, WANG Guanghong, OU Cong, LI Shourui, LI Xiangwang, ZHAO Huajun, LIU Jianhua, ZHAO Bi. Numerical simulation and engineering application of comb-shaped directional long borehole hydraulic fracturing under different arrangement of holes[J]. Safety in Coal Mines, 2021, 52(5): 72-77.

Numerical simulation and engineering application of comb-shaped directional long borehole hydraulic fracturing under different arrangement of holes

More Information
  • Published Date: May 19, 2021
  • In order to avoid the blindness of the hydraulic fracturing of the directional long borehole in coal mine 2130 of Xinjiang Coking Coal Group, and to accurately grasp the extension and expansion of hydraulic fracturing under different hole layout methods, this paper uses the numerical simulation method to carry out hydraulic fracturing numerical simulation for comb directional long borehole in 4# coal seam of coal mine 2130 with a buried depth of 500 m. The simulation results show that the different hole layout methods have obvious effects on hydraulic fracturing initiation pressure, crack initiation position, fracture mode and crack extension and expansion law, combined with the actual situation of 4# coal seam in coal mine 2130, the optimal drilling hole layout method and fracturing parameters are optimized for engineering practice, and good fracturing results have been achieved. Compared with the previous hydraulic fracturing measures at this level, the drainage concentration is increased by 2.7 times, and the scalar amount of drainage increased by 11.8 times.
  • [1]
    李学海,苟星奎. 定向长钻孔综合瓦斯抽采技术[J]. 价值工程,2013,32(5):44-45.

    LI Xuehai, GOU Xingkui. Directional long boring comprehensive gas extraction technology[J]. Value Engineering, 2013, 32(5): 44-45.
    [2]
    吕有厂.水力压裂技术在高瓦斯低透气性矿井中的应用[J].重庆大学学报,2010,33(7):102-107.

    LV Youchang. Application the hydraulic fracturing technology in the high pressure and low permeability mine[J]. Journal of Chongqing University, 2010, 33(7): 102-107.
    [3]
    刘海金.定向长钻孔水力压裂在松软煤层中的应用研究[J].江西煤炭科技,2017(3):20-23.

    LIU Haijin. Practical research on hydraulic fracturing of directional long drilling in soft coal seam[J]. Jiangxi Coal Science & Technology, 2017(3): 20-23.
    [4]
    李延军.碎软煤层井下多点定向长钻孔水力压裂技术[J].煤矿安全,2018,49(6):45-48.

    LI Yanjun. Long multi-point underground directional drilling hydraulic fracturing technology for low-permeability weak coalbed[J]. Safety in Coal Mines, 2018, 49(6): 45-48.
    [5]
    闫江伟,张小兵,张子敏.煤与瓦斯突出地质控制机理探讨[J].煤炭学报,2013,38(7):1174-1178.

    YAN Jiangwei, ZHANG Xiaobing, ZHANG Zimin. Research on geological control mechanism of coal-gas outburst[J]. Journal of China Coal Society, 2013, 38(7): 1174-1178.
    [6]
    徐芝纶.弹性力学简明教程[M].北京:高等教育出版社,2013.
    [7]
    颜志丰.山西晋城地区煤岩力学性质及煤储层压裂模拟研究[D].北京:中国地质大学(北京),2009.
    [8]
    李传亮,孔祥言.油井压裂过程中岩石破裂压力计算公式的理论研究[J].石油钻采工艺,2000,22(2):54.

    LI Chuanliang, KONG Xiangyan. A theoretical study on rock breakdown pressure calculation equations of fracturing process[J]. Oil Drilling & Production Technology, 2000, 22(2): 54.
    [9]
    Yang T H, Li L C, Tham L G, et al. Numerical approach to hydraulic fracturing in heterogeneous and permeable rocks[J]. Key Engineering Materials, 2003, 243-244: 351-356.
    [10]
    袁志刚.煤岩体水力压裂裂缝扩展及对瓦斯运移影响研究[D].重庆:重庆大学,2014.
  • Related Articles

    [1]ZHAO Wei, YUAN Yuan, WANG Kai, XU Chao, SONG Yanan, FENG Zhongkai, GUO Xiaofang, WANG Liuyi. Numerical simulation analysis of influence of depth on crack turning behavior in hydraulic fracturing of gas-bearing coal seam[J]. Safety in Coal Mines, 2022, 53(10): 51-56.
    [2]ZHANG Bao, HUA Mingguo, LI Jianwei, FU Guoting, YAO Banghua. Numerical Simulation of Stress-seepage Coupling of Pre-extraction Gas in Surface Well[J]. Safety in Coal Mines, 2020, 51(1): 18-21.
    [3]WEI Meng, YUAN Chenhan, JIANG Yong, SU Tao, YUAN Chenxin. Verification Study on Residual Stress Equation of Pressure Relief in Blasting of High Ground Stress Tunnel[J]. Safety in Coal Mines, 2019, 50(6): 266-271.
    [4]MA Jie, ZHANG Haitao. Study on Different of Ground Stress Distribution in Deep Geo-environment of Coal Mine[J]. Safety in Coal Mines, 2017, 48(9): 208-210.
    [5]GUO Chenye, QIN Le, LI Dong, LI Yong, ZHOU Dongping. Effect of Ground Stress and Initial Fissure on Crack Initiation Direction and Pressure by Hydraulic Fracturing[J]. Safety in Coal Mines, 2015, 46(12): 161-165.
    [6]ZHAO Yuting, DUAN Dong, YANG Yao, FANG Chaohe, QU Xiaoming, KANG Zhiqin. Numerical Simulation on Influence Factors of Ground Stress at the End of Fault[J]. Safety in Coal Mines, 2015, 46(10): 210-212,213.
    [7]XIE Shuxin. Influence of Tectonic Region Ground Stress on Coal and Gas Outburst in Jiulishan Mine Field[J]. Safety in Coal Mines, 2015, 46(9): 169-172,176.
    [8]LI Shugang, MA Ruifeng, XU Mangui, XU Gang. Influence of Ground Stress Deviation on Coal Seam Hydraulic Fracturing[J]. Safety in Coal Mines, 2015, 46(3): 140-144.
    [9]QIN-wei, GUI Shu-qing. Field Study on Ground Stress Distribution Laws in Huainan Mining Area[J]. Safety in Coal Mines, 2013, 44(10): 185-188.
    [10]ZENG Zhao-you. Field Testing and Analysis of Deep Ground Stress in No.1 Coal Mine of Pingdingshan Coal Industry[J]. Safety in Coal Mines, 2012, 43(7): 143-146.
  • Cited by

    Periodical cited type(19)

    1. 丁华忠,王力,景慎怀,黄寒静,陈洪岩,程合玉,李明强,曾庆辉,聂超. 松软煤层条带预抽底板梳状孔成孔及飞管完孔技术研究. 煤炭技术. 2025(03): 141-145 .
    2. 聂子淇,王超群. 煤矿复杂地层底板梳状定向钻孔钻进工艺技术研究. 能源与节能. 2024(01): 153-157 .
    3. 杨旭,王涛,李明. 孤岛工作面长水平深孔全长水力压裂卸压机理及多参量效果分析. 煤矿安全. 2024(02): 147-158 . 本站查看
    4. 武晓光,龙腾达,黄中伟,高文龙,李根生,谢紫霄,杨芮,鲁京松,马金亮. 页岩油多岩性交互储层径向井穿层压裂裂缝扩展特征. 石油学报. 2024(03): 559-573+585 .
    5. 张洪祯. 高位定向长钻孔瓦斯抽采技术在高山煤矿瓦斯治理中的应用. 科技创新与应用. 2024(20): 189-192 .
    6. 李定启,张浩海. 五阳煤矿松软煤层定向水射流卸压增透技术研究. 矿业研究与开发. 2024(09): 116-122 .
    7. 倪兴. 叠加效应下多孔水力割缝联合抽采参数优化研究. 工矿自动化. 2023(01): 146-152 .
    8. 李鹏. 水力压裂技术在煤矿瓦斯治理中的应用研究. 内蒙古煤炭经济. 2023(02): 4-6 .
    9. 武瑞龙. 复杂地层底板梳状定向钻孔抽采瓦斯技术研究. 煤炭工程. 2023(06): 79-82 .
    10. 王正帅. 碎软煤层条带定向长钻孔水力压裂强化瓦斯抽采技术研究. 中国煤炭. 2023(06): 46-52 .
    11. 贾猛. 郭庄矿井下新型水力压裂技术的应用分析. 山东煤炭科技. 2023(08): 188-190 .
    12. 李建军,刘文岗,杜君武,任健刚. 定向长钻孔分段水力压裂技术在布尔台煤矿的应用. 煤矿安全. 2022(04): 94-102 . 本站查看
    13. 吴晋军. 长平矿大功率定向长钻孔瓦斯抽采技术实践. 江西煤炭科技. 2022(02): 165-167+170 .
    14. 赵坤,李文,欧聪. 穿层梳状分支孔煤层段精准水力压裂工程试验. 煤矿安全. 2022(06): 89-95 . 本站查看
    15. 魏启磊. 松软低透煤层掘进工作面聚能爆注定向卸压一体化技术研究. 煤. 2022(08): 49-52 .
    16. 张士岭,宋志强. 基于速度势的多抽采钻孔干扰理论. 矿业研究与开发. 2022(09): 22-28 .
    17. 何明川. 层状构造煤层定向钻孔水力压裂瓦斯高效抽采技术. 煤矿安全. 2022(12): 62-67 . 本站查看
    18. 吕二忠. 水力冲孔技术在瓦斯抽采中的应用. 科学技术创新. 2021(29): 129-131 .
    19. 贺斌,雷鹏翔,弓仲标. 水力压裂技术在大柳塔煤矿52502工作面的应用. 煤炭科学技术. 2021(S2): 78-84 .

    Other cited types(0)

Catalog

    Article views (27) PDF downloads (0) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return