• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
HE Mingchuan. High efficiency gas extraction technology of directional drilling hydraulic fracturing in stratified tectonic coal seams[J]. Safety in Coal Mines, 2022, 53(12): 62-67.
Citation: HE Mingchuan. High efficiency gas extraction technology of directional drilling hydraulic fracturing in stratified tectonic coal seams[J]. Safety in Coal Mines, 2022, 53(12): 62-67.

High efficiency gas extraction technology of directional drilling hydraulic fracturing in stratified tectonic coal seams

More Information
  • Published Date: December 19, 2022
  • In order to achieve high-efficiency gas drainage in stratified tectonic coal seams, this paper takes Yushutian Coal Mine as the test point to carry out the research on high-efficiency gas drainage technology of directional drilling hydraulic fracturing in stratified tectonic coal seams. According to the stratified tectonic characteristics of the lower 5# coal seam in Yushutian Coal Mine, the second cycle gas drainage and fracturing boreholes of 110503 transportation roadway are arranged in the semi dark briquette stratification. A total of 5 bedding boreholes are constructed, the cumulative drilling length is 3 000 m, the drilling direction control range is 600 m, and the inclination control range is 15 m outside the contour lines of the upper and lower sides of the roadway; the cumulative fracturing length of the borehole is about 2 500 m, the cumulative liquid injection volume is 570 m3, the fracture initiation pressure of each hole section is 7.6-8.8 MPa, and the maximum pump injection pressure is 11.9-13.8 MPa. The research results show that compared with the first cycle directional fracturing borehole in 110503 transportation roadway without considering the stratified tectonic in the semi bright briquette layer at 1/2 of the coal thickness, the second cycle directional fracturing borehole is arranged in the semi dark briquette layer, the monthly average gas drainage concentration of the drilling yard is increased by 4.3 times, and the monthly average gas drainage purity is increased by 3.2 times.
  • [1]
    国家安全生产监督管理总局,国家煤矿安全监察局.煤矿安全规程[M].北京:煤炭工业出版社,2016.
    [2]
    国家煤矿安全监察局.防治煤与瓦斯突出细则[M]. 北京:煤炭工业出版社,2019.
    [3]
    石智军,李泉新,姚克.煤矿井下1 800 m水平定向钻进技术与装备[J].煤炭科学技术,2015,43(2):109.

    SHI Zhijun, LI Quanxin, YAO Ke. Underground mine 1 800 m horizontal directional drilling technology and equipment[J]. Coal Science and Technology, 2015, 43(2): 109-113.
    [4]
    陈冬冬,孙四清,张俭,等.井下定向长钻孔水力压裂煤层增透技术体系与工程实践[J].煤炭科学技术,2020,48(10):84-89.

    CHEN Dongdong, SUN Siqing, ZHANG Jian, et al.Technical system and engineering practice of coal seam permeability improvement through underground directional long borehole hydraulic fracturing[J]. Coal Science and Technology, 2020, 48(10): 84-89.
    [5]
    郑凯歌.碎软低透煤层底板梳状长钻孔分段水力压裂增透技术研究[J].采矿与安全工程学报,2020,37(2):273-280.

    ZHENG Kaige. Permeability improving technology by sectional hydraulic fracturing for comb-like long drilling in floor of crushed and soft coal seam with low permeability[J]. Journal of Mining & Safety Engineering, 2020, 37(2): 272-281.
    [6]
    孙四清,张群,闫志铭,等.碎软低渗高突煤层井下长钻孔整体水力压裂增透工程实践[J].煤炭学报,2017, 42(9):2337-2344.

    SUN Siqing, ZHANG Qun, YAN Zhiming, et al. Practice of permeability enhancement through overall hydraulic fracturing of long hole in outburst-prone soft crushed coal seam with low permeability[J]. Journal of China Coal Society, 2017, 42(9): 2337-2344.
    [7]
    王华,严德天.煤田地质学简明教程[M].武汉:中国地质大学出版社,2015.
    [8]
    韩德馨.中国煤岩学[M].徐州:中国矿业大学出版社,1996:26-93.
    [9]
    邹艳荣,杨起.煤中的孔隙与裂隙[J].中国煤田地质,1998,10(4):39-48.
    [10]
    王耀强,李文.阿艾矿区地质构造及其演化对煤层瓦斯生成及赋存的控制[J].煤炭技术,2021,40(10):76-79.

    WANG Yaoqiang, LI Wen. Control of geological structure and its evolution of A′ai mining area on generation and occurrence of coal seam gas[J]. Coal Technology, 2021, 40(10): 76-79.
    [11]
    李文,王广宏,欧聪,等.不同布孔方式下梳状定向长钻孔水力压裂数值模拟及工程应用[J].煤矿安全,2021,52(5):72-77.

    LI Wen, WANG Guanghong, OU Cong, et al. Numerical simulation and engineering application of comb-shaped directional long borehole hydraulic fracturing under different arrangement of holes[J]. Safety in Coal Mines, 2021, 52(5): 72-77.
    [12]
    蓝盛,尹延春.侧压力系数对煤体水力裂缝扩展规律的影响研究[J].煤矿安全,2020,51(11):216-221.

    LAN Sheng, YIN Yanchun. Research on influence of lateral pressure coefficient on hydraulic fracturing propagation law in coal body[J]. Safety in Coal Mines, 2020, 51(11): 216-221.
    [13]
    袁志刚.煤岩体水力压裂裂缝扩展及对瓦斯运移影响研究[D].重庆:重庆大学,2014.
    [14]
    张飞.豫西构造煤穿层钻孔水力压裂数值模拟及应用研究[D].焦作:河南理工大学,2015.
    [15]
    黄炳香,程庆迎,刘长友,等.煤岩体水力致裂理论及其工艺技术框架[J].采矿与安全工程学报,2011,28(2):167-173.

    HUANG Bingxiang, CHENG Qingying, LIU Changyou, et al. Hydraulic fracturing theory of coal-rock mass and its technical framework[J]. Journal of Mining & Safety Engineering, 2011, 28(2): 167-173.
  • Related Articles

    [1]CHEN Dongdong. Integral hydraulic fracturing gas drainage technology for directional drilling in gob-side entry under influence of mining[J]. Safety in Coal Mines, 2023, 54(7): 123-129.
    [2]Application of directional long borehole subsection hydraulic fracturing technology in Buertai Coal Mine[J]. Safety in Coal Mines, 2022, 53(4): 94-102.
    [3]LI Yanjun. Long Multi-point Underground Directional Drilling Hydraulic Fracturing Technology for Low-permeability Weak Coalbed[J]. Safety in Coal Mines, 2018, 49(6): 45-48.
    [4]LIU Haibo, SHANG Zhengjie. Hydraulic Punching and Hydraulic Fracturing Coupling Permeability Improving Technique in “Three Soft” Coal Seam[J]. Safety in Coal Mines, 2017, 48(11): 71-75.
    [5]YUAN Guangming, CHEN Yutao, TIAN Weidong, HUANG Wenxiang. Experimental Study on Hydraulic Fracturing Technology in Outburst Coal Seam with Low Permeability in Yutianbao Mine[J]. Safety in Coal Mines, 2017, 48(4): 9-12.
    [6]WANG Qi. Demonstrative Research and Application of Hydraulic Fracturing by Crossing Borehole in Dawan Mine[J]. Safety in Coal Mines, 2016, 47(7): 155-159.
    [7]FU Jiangwei, WANG Gongzhong, TIAN Kunyun, SUN Mingchuang. Study on Safety Guarantee System of Hydraulic Fracturing in Underground Coal Mine[J]. Safety in Coal Mines, 2016, 47(1): 151-154,158.
    [8]LI Baofa, LIANG Wenxu, HU Gaojian, LI Jiangtao. Application of Hydraulic Fracturing Permeability Improvement Technology in Xing'an Coal Mine[J]. Safety in Coal Mines, 2015, 46(7): 159-162.
    [9]ZHANG You-shi. Research Progress and Prospect of Hydraulic Fracturing Technologies in Coal Mine Underground[J]. Safety in Coal Mines, 2012, 43(12): 163-165,172.
    [10]XUE Shi-peng, WEI Li-na, QIAN Wei-hua. Test of Hydraulic Fracture and Its Effect Analysis in Xinzhi Coal Mine[J]. Safety in Coal Mines, 2012, 43(4): 89-91.
  • Cited by

    Periodical cited type(12)

    1. 张波,刘成,陈建奇,柳雪青,李洋冰,马立涛,杨江浩,乔方. 易碎煤岩制备方法及其孔渗参数测试技术. 非常规油气. 2024(01): 56-61 .
    2. 金霏阳,陈学习,高泽帅. 不同变质程度煤体微孔多重分形特征研究. 煤矿安全. 2024(03): 9-17 . 本站查看
    3. 王睿,冯宏飞,柳长峰. 压汞法和液氮吸附法在高阶煤孔隙结构表征中的适用性. 石油钻采工艺. 2024(01): 112-118 .
    4. 刘尽贤. 渝东南南川地区深层煤层特征与煤层气赋存状态研究. 中国煤炭地质. 2024(06): 18-26 .
    5. 王晓婷,袁红,李梅. 不同表面活性剂对煤的润湿性的影响研究. 煤矿安全. 2024(12): 97-105 . 本站查看
    6. 任少魁,秦玉金,贾宗凯,苏伟伟. 有效应力对煤体渗透率的影响试验研究. 煤矿安全. 2023(01): 56-61 . 本站查看
    7. 肖乾隆,李锦,李伍. 姚桥矿7号煤层垂向孔隙结构及分形特征研究. 中国煤炭地质. 2023(09): 1-13+26 .
    8. 卢宏伟,徐宏杰,杨祎超,丁海,祝月,苟博明,戴王杰. 煤储层孔隙结构与甲烷吸附能量变化的非均质性特征. 科学技术与工程. 2023(30): 12817-12826 .
    9. 司俊鸿,李潭,胡伟,王乙桥. 采空区多孔介质等效孔隙网络拓扑结构表征算法研究. 华北科技学院学报. 2022(01): 1-6 .
    10. 王龙伟. 基于低温液氮吸附法的长平井田3号煤孔隙结构特征研究. 山西煤炭. 2022(03): 65-73+87 .
    11. 李照平,袁梅,许石青,张锐,杨萌萌,徐林. 贵州低透无烟煤分形维数表征及其影响因素. 矿业工程研究. 2022(04): 42-48 .
    12. 邢敏,吴金随,张辞源,李更川,高嵩. 基于CT扫描技术对煤岩的孔隙结构的提取和研究. 华北科技学院学报. 2021(03): 32-38 .

    Other cited types(23)

Catalog

    Article views (57) PDF downloads (43) Cited by(35)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return