• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
ZHAN Keliang, XUE Junhua, PANG Jianyong, HUANG Jinkun, LIU Guangcheng. Model Test Study on Influence of Maximum Geo-stress Direction on Force and Damage of Chamber[J]. Safety in Coal Mines, 2019, 50(12): 51-53,59.
Citation: ZHAN Keliang, XUE Junhua, PANG Jianyong, HUANG Jinkun, LIU Guangcheng. Model Test Study on Influence of Maximum Geo-stress Direction on Force and Damage of Chamber[J]. Safety in Coal Mines, 2019, 50(12): 51-53,59.

Model Test Study on Influence of Maximum Geo-stress Direction on Force and Damage of Chamber

More Information
  • Published Date: December 19, 2019
  • Deformation control of surrounding rock in deep roadway is one of the key topics in deep geotechnical soil. In this paper, the influence of the maximum geo-stress direction on the force and failure modes of the chamber is adopted. The model test of the surrounding rock failure mechanism simulation test system of the deep roadway is carried out. In the model test chamber, the straight wall arch chamber was used, and the strain values of the surrounding rock of the chamber were recorded by the strain gauges. The three groups of experiments were carried out with the maximum load and the axis of the chamber at 90°, 60° and 0° (parallel). The study of this model test shows that at 60° and 90°, only the side wall of the chamber is ruptured, and the radial strain generated in the vault and the bottom of the floor is under pressure, which has no obvious effect on the failure mode of the chamber; at 0° (parallel), the arch, the bottom plate and the side wall of the chamber are all broken. The radial strain generated in the vault and the bottom of the floor is the tension state, which has a significant effect on the failure mode of the chamber. Simulation test of surrounding rock failure mechanism of deep roadway can better simulate the surrounding rock failure mechanism of deep roadway.
  • [1]
    何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.
    [2]
    刘泉声,肖虎,卢兴利,等.高地应力破碎软岩巷道底臌特性及综合控制对策研究[J].岩土力学,2012,33(6):1703-1710.
    [3]
    董春亮,赵光明,卢小雨,等.深部圆形巷道开挖卸荷的围岩力学特征及破坏机理[J].采矿与安全工程学报,2017,34(3):511-518.
    [4]
    陈旭光,张强勇,刘德军,等.高地应力深部巷道开挖锚固特性的三维地质力学模型试验研究[J].土木工程学报,2011,44(9):107-113.
    [5]
    杨栋,李海波,夏祥,等.高地应力条件下爆破开挖诱发围岩损伤的特性研究[J].岩土力学,2014,35(4):1110-1116.
    [6]
    陈明,胡英国,卢文波,等.深埋隧洞爆破开挖扰动损伤效应的数值模拟[J].岩土力学,2011,32(5):1531.
    [7]
    刘高,王小春,聂德新.金川矿区地下巷道围岩应力场特征及演化机制[J].地质灾害与环境保护,2002(4):40-45.
    [8]
    薛俊华,范明建,段昌瑞,等.深部复合岩层巷道围岩控制技术[J].煤矿开采,2015,20(1):64-67.
    [9]
    韩小庆,朱文军,张文涛,等.高地应力大跨度硐室基础稳定性加固技术[J].煤矿机电,2012(6):117-119.
    [10]
    杨树新,李宏,白明洲,等.高地应力环境 下硐室开挖围岩应力释放规律[J].煤炭学报,2010,35(1):26-30.
    [11]
    廖志毅,朱建波,唐春安.高地应力作用下 岩石和地下硐室的动态力学行为和响应[J].岩土工程学报,2016,38(S2):260-265.
    [12]
    陈卫忠,肖正龙,田洪铭.深埋高地应力TBM隧道挤压大变形及其控制技术研究[J].岩石力学与工程学报,2015,34(11):2215-2226.
    [13]
    周辉,胡善超,卢景景,等.煤矿深井巷道 掘进全过程围岩变形破坏原位测试[J].岩土力学,2015,36(12):3523-3530.
    [14]
    陈志敏.高地应力软岩隧道围岩压力研究和围岩与支护结构相互作用机制分析[J].岩石力学与工程学报,2014,33(3):647.
    [15]
    王成,汪良海,张念超.高应力软岩巷道围 岩流变动态演化研究[J].采矿与安全工 程学报,2013,30(1):14-18.
    [16]
    周小平,钱七虎,张伯虎,等.深埋球形洞室围岩分区破裂化机理[J].工程力学,2010,27(1):69-75.
    [17]
    李术才,王汉鹏,钱七虎,等.深部巷道围岩分区破裂化现象现场监测研究[J].岩石力学与工程学报,2008(8):1545-1553.
  • Related Articles

    [1]ZHONG Huiwei, YUAN Yong, WANG Shengzhi, TENG Long, MA Fengchao. Application of Response Surface Methodology in Similar Simulation Test Ratio[J]. Safety in Coal Mines, 2020, 51(8): 43-47.
    [2]WANG Wenbo, SUN Chuanping, HU Dachong. Simulation Study on Dynamic Stress and Deformation Characteristics of Strip Coal Pillar Under Mining Effect[J]. Safety in Coal Mines, 2018, 49(8): 243-246.
    [3]XU Jiang, WU Xuefeng, FENG Dan, TANG Xupei. Physical Simulation Test of Hydraulic Borehole Flushing[J]. Safety in Coal Mines, 2018, 49(1): 21-24.
    [4]FU Yilong, KANG Tianhe. Numerical Simulation of Reinforcement Method and Its Effect for High Stress Broken Chamber[J]. Safety in Coal Mines, 2017, 48(2): 192-195.
    [5]MA Geng, ZHANG Fan, LIU Xiao, TANG Yang. Simulation Test Study on True Triaxial Hydraulic Fracturing of Coal and Rock[J]. Safety in Coal Mines, 2016, 47(11): 1-3,7.
    [6]WANG Changxiang, ZHANG Xinguo, Konghe. Numerical Simulation and Orthogonal Test About Gateway Supporting and Coal Pillar Size[J]. Safety in Coal Mines, 2016, 47(2): 47-50.
    [7]WANG Yongzhen, SHAO Hao, YIN Xusheng, LUO Renjun. Construction of Survival Simulation Test System of Refuge Chamber and Its Air Tightness Test[J]. Safety in Coal Mines, 2015, 46(10): 130-132,136.
    [8]CHEN Fandong, FENG Liguo, SHANG Sisi. Methane Concentration Simulation for New Flameproof Testing Device[J]. Safety in Coal Mines, 2015, 46(2): 79-81.
    [9]WANG Gang. Simulation Experimental Test System for Coal Spontaneous Combustion[J]. Safety in Coal Mines, 2014, 45(4): 103-105.
    [10]WANG Ling-yan, PANG Jian-yong, LYU Pei. Applications Study of Lining Test of New Composite Material Network[J]. Safety in Coal Mines, 2012, 43(11): 54-56.
  • Cited by

    Periodical cited type(3)

    1. 吕改杰,席英伟. 地应力方向对隧道硐室变形影响程度研究. 四川建筑. 2024(03): 172-174 .
    2. 李小龙,虎晓龙,崔振强,张杰,赵雷,闫仑,孙佳龙. 灵新煤矿深部六采区地应力分布规律研究及其工程应用. 煤炭技术. 2024(09): 54-57 .
    3. 刘金钰. 煤矿避难硐室生存环境关键技术有效应用思考. 内蒙古煤炭经济. 2023(09): 91-93 .

    Other cited types(2)

Catalog

    Article views (100) PDF downloads (0) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return