• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
HU Shaoyin, WANG Zhengjun, HUA Yuecun. Research and Application of Mine Gas Dynamic Intelligent Warning Technology[J]. Safety in Coal Mines, 2019, 50(9): 109-111,115.
Citation: HU Shaoyin, WANG Zhengjun, HUA Yuecun. Research and Application of Mine Gas Dynamic Intelligent Warning Technology[J]. Safety in Coal Mines, 2019, 50(9): 109-111,115.

Research and Application of Mine Gas Dynamic Intelligent Warning Technology

More Information
  • Published Date: September 19, 2019
  • By using the data collection function of mine safety monitoring system, through analyzing and calculating the gas monitoring data of various points monitored in real time, based on the unascertained measure theory and big data algorithm, the dynamic peak mean of monitoring points is generated, and then the daily dynamic peak mean and weekly dynamic peak mean are formed. By comparing the dynamic peak mean with the weekly peak mean, the real-time dynamic warning is given.
  • [1]
    陈志刚.煤矿瓦斯的危害及治理对策研究[J].内蒙古煤炭经济,2016(9):102-103.
    [2]
    许喜雷,王振.煤矿瓦斯治理过程控制方法浅析[J].山东工业技术,2015(10):54-54.
    [3]
    林柏泉,崔恒信.矿井瓦斯防治理论与技术[M].徐州:中国矿业大学出版社,1998:56-82.
    [4]
    崔鸿伟.长壁采煤工作面瓦斯涌出量影响因素实测研究[J].煤炭科学技术,2011,39(11):70-72.
    [5]
    俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [6]
    谢东海,冯涛,朱川曲.回采工作面瓦斯涌出量的熵权均值属性测度模型及其应用[J].中南大学学报(自然科学版),2013,44(6):2482-2487.
    [7]
    张凤舞,邓蓉.非均值浓度下瓦斯涌出量计算探讨[C]煤矿瓦斯综合治理与开发利用论文集.北京:中国煤炭学会,2012:111-116.
    [8]
    重庆市煤炭学会.重庆地区煤与瓦斯突出防治技术[M].北京:煤炭工业出版社,2005.
    [9]
    王正洪,张小鸣,徐君.矿井瓦斯传感器自动调校技术及其研究进展[J].常州大学学报(自然科学版),2004,16(2):61-64.
    [10]
    汪丛笑.煤矿安全监控系统中传感器的在线调校标记方法[J].工矿自动化,2008,34(4):66-67.
    [11]
    文光才,宁小亮,赵旭生.矿井煤与瓦斯突出预警技术及其应用[J].煤炭科学技术,2011,39(2):55-58.
  • Related Articles

    [1]CHENG Lixing. Parameter optimization analysis and mechanical property test research based on reaming anchorage[J]. Safety in Coal Mines, 2023, 54(7): 196-204.
    [2]SU Shilong, LI Libing, GUO Xiaoyang, MU Yongliang. Effects of Cementing Agent and Particle Size Distribution on Adsorption and Permeability of Briquette[J]. Safety in Coal Mines, 2020, 51(12): 8-11.
    [3]ZHONG Huiwei, YUAN Yong, WANG Shengzhi, TENG Long, MA Fengchao. Application of Response Surface Methodology in Similar Simulation Test Ratio[J]. Safety in Coal Mines, 2020, 51(8): 43-47.
    [4]XU Jiang, WU Xuefeng, FENG Dan, TANG Xupei. Physical Simulation Test of Hydraulic Borehole Flushing[J]. Safety in Coal Mines, 2018, 49(1): 21-24.
    [5]MA Geng, ZHANG Fan, LIU Xiao, TANG Yang. Simulation Test Study on True Triaxial Hydraulic Fracturing of Coal and Rock[J]. Safety in Coal Mines, 2016, 47(11): 1-3,7.
    [6]WANG Changxiang, ZHANG Xinguo, Konghe. Numerical Simulation and Orthogonal Test About Gateway Supporting and Coal Pillar Size[J]. Safety in Coal Mines, 2016, 47(2): 47-50.
    [7]WANG Yongzhen, SHAO Hao, YIN Xusheng, LUO Renjun. Construction of Survival Simulation Test System of Refuge Chamber and Its Air Tightness Test[J]. Safety in Coal Mines, 2015, 46(10): 130-132,136.
    [8]CHEN Fandong, FENG Liguo, SHANG Sisi. Methane Concentration Simulation for New Flameproof Testing Device[J]. Safety in Coal Mines, 2015, 46(2): 79-81.
    [9]WANG Gang. Simulation Experimental Test System for Coal Spontaneous Combustion[J]. Safety in Coal Mines, 2014, 45(4): 103-105.
    [10]WEN Ying-yuan, MU Zong-long, CAI Wu, WANG Hao. The Parameter Optimization Analysis of Borehole Pressure Relief in Coal Seam Based on Orthogonal Test[J]. Safety in Coal Mines, 2013, 44(5): 170-173.

Catalog

    Article views (150) PDF downloads (11) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return