• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
ZHANG Jiangshi, YANG Xuesong. Experimental Study on Droplet Diameter for PM10 of Mine Dust[J]. Safety in Coal Mines, 2019, 50(5): 47-50.
Citation: ZHANG Jiangshi, YANG Xuesong. Experimental Study on Droplet Diameter for PM10 of Mine Dust[J]. Safety in Coal Mines, 2019, 50(5): 47-50.

Experimental Study on Droplet Diameter for PM10 of Mine Dust

More Information
  • Published Date: May 19, 2019
  • To obtain relation of droplet size for trapping PM10 and PM10 and confirm range of the best droplet size to capture dust of PM10, by particle size coupling experiment system of dust field and droplet field constructed independently, using hollow conical nozzle with 1.0 mm diameter, controlling airflow speed at 1.5 m/s to simulate the on-site airflow speed, the pressure is 3 MPa, 4 MPa and 5 MPa, and using laser particle size analyzer to measure droplet size before and after the capture of PM10. When PM10 is captured by droplets, the probability of the droplet size being 6 to 13 times of the dust size is 93%, and the probability of 8 to 10 times is 61.6%. When pressure is 3 MPa, the range of dust particle size captured by fog drops is large. When the pressure is 4 MPa and 5 MPa, most trappe ddust is mostly less than 7 μm. When the nozzle diameter remains unchanged, the greater the pressure is, the more favorable it is to capture PM10. According to the experimental results, the functional relationship between droplet size and particle size of captured dust under three kinds of pressure was fitted.
  • [1]
    聂百胜,李祥春,杨涛,等.工作面采煤期间PM2.5粉尘的分布规律[J].煤炭学报,2013,38(1):33-37.
    [2]
    秦跃平,张苗苗,崔丽洁,等.综掘工作面粉尘运移的数值模拟及压风分流降尘方式研究[J].北京科技大学学报,2011,33(7):790-794.
    [3]
    刘毅,蒋仲安,蔡卫,等.综采工作面粉尘运动规律的数值模拟[J].北京科技大学学报,2007,29(4):351.
    [4]
    吴琨,王京刚,毛益平,等.荷电水雾振弦栅除尘技术机理研究[J].金属矿山,2004,338(8):59-62.
    [5]
    刘社育,蒋仲安,金龙哲.湿式除尘器除尘机理的理论分析[J].中国矿业大学学报,1998,27(1):47-50.
    [6]
    Li Q Z, Lin B Q, Zhao S, et al. Surface physical properties and its effects on the wetting behaviors of respirable coal mine dust[J]. Powder Technology, 2013, 233: 137-145.
    [7]
    马素平,寇子明.喷雾降尘机理的研究[J].煤炭学报,2005,30(3):297-300.
    [8]
    曹建明.雾化液滴尺寸和速度分布函数的推导[J].交通运输工程学报,2007,7(1):34-36.
    [9]
    王鹏飞,刘荣华,汤梦,等.煤矿井下高压喷雾雾化特性及其降尘效果实验研究[J].煤炭学报,2015,40(9):2124-2130.
    [10]
    程卫民,周刚,左前明,等.喷嘴喷雾压力与雾化粒度关系的实验研究[J].煤炭学报,2010,35(8):1308.
    [11]
    王文靖,蒋仲安,陈举师,等.不同结构喷嘴内外流场的数值模拟分析[J].煤矿安全,2013,44(11):162.
    [12]
    傅贵,张江石,潘结南,等.工作面粉尘污染状况研究[J].煤炭学报,2006,31(1):63-66.
    [13]
    周刚,程卫民,陈连军,等.综放工作面粉尘浓度空间分布规律的数值模拟及其应用[J].煤炭学报,2010, 35(12):2094-2099.
    [14]
    蒋仲安,陈举师,牛伟,等.皮带运输巷道粉尘质量浓度分布规律的数值模拟[J].北京科技大学学报,2012,34(9):977-981.
    [15]
    周刚,程卫民,王刚,等.综放工作面粉尘场与雾滴场耦合关系的实验研究[J].煤炭学报,2010,35(10):1660-1664.
    [16]
    赵晓亮,齐庆杰,葛少成,等.受限空间气泡雾化尘-雾粒径耦合试验研究[J].中国安全科学学报,2017, 27(3):129-134.
  • Related Articles

    [1]LI Peng, QI Donghe, GENG Congji, WANG Chenggong, HUANG Gan, PAN Day, ZHANG Tongtong. Height of Water Flowing Fracture Zone Based on Strain Energy Failure Criterion[J]. Safety in Coal Mines, 2019, 50(10): 34-39.
    [2]HUANG Hao, FANG Gang, LIANG Xiangyang. Study on Development Height of Jurassic Water Flowing Fractured Zone of Deep Buried Coal Seam in Hujiert Mining Area[J]. Safety in Coal Mines, 2019, 50(10): 22-28.
    [3]HE Zhaoyu, QIAO Wei, REN Chunhui, XIE Jun, ZHAO Liantao. Mining Effect of Coal Beds and Red Strata Overlying Rock Structure and Numerical Simulation of Water Flowing Fractured Zone[J]. Safety in Coal Mines, 2018, 49(7): 175-180.
    [4]JIANG Ning, NING Jianguo, WANG Jun, WANG Jun. Simulation Study on Development Laws of Water Flowing Fractured Zone Under Different Angles of Lateral Pressure[J]. Safety in Coal Mines, 2018, 49(4): 38-41.
    [5]LIU Jing, LI Genwei. Multi-factor Influence Analysis of Water Conductivity Fractured Zone Height in Strip Filling Water Preserved Mining[J]. Safety in Coal Mines, 2018, 49(3): 194-197.
    [6]WANG Guohua, YIN Shangxian, LIU Ming, ZHANG Xiangwei. Height Prediction Methods of Water Flowing Fractured Zone Under Condition of Fully-mechanized Mining[J]. Safety in Coal Mines, 2017, 48(11): 187-190.
    [7]LI Li. Application of Numerical Simulation in Analyzing Water Flowing Fractured Zone in Coal[J]. Safety in Coal Mines, 2017, 48(10): 160-162,166.
    [8]XING Maolin, LI Wenping, YIN Jinghui. Study on Height Prediction of Water Flowing Fractured Zone Caused by Full-mechanized Caving Mining in Jurassic Coalfield[J]. Safety in Coal Mines, 2017, 48(9): 39-42.
    [9]YANG Qi, LI Xiaoqin, LI Wenping. Research on Development Height of Water Flowing Fractured Zone in Overlying Strata for Coal Mining in Mountain Area[J]. Safety in Coal Mines, 2016, 47(12): 31-34.
    [10]HU Hao, NING Jianguo, WANG Jun, LI Guangbo, SHI Xinshuai. Numerical Simulation on Height of Water Flowing Fractured Zone Development in Overlying Rocks Under Hard Roof Coal Seam Group Mining[J]. Safety in Coal Mines, 2016, 47(5): 45-48.

Catalog

    Article views (132) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return