• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
YUAN Benqing. Application Conditions and Evaluation Indexes of Hydraulic Permeability Enhancement Technology in Coal Roadway Strip Mining[J]. Safety in Coal Mines, 2018, 49(12): 164-168.
Citation: YUAN Benqing. Application Conditions and Evaluation Indexes of Hydraulic Permeability Enhancement Technology in Coal Roadway Strip Mining[J]. Safety in Coal Mines, 2018, 49(12): 164-168.

Application Conditions and Evaluation Indexes of Hydraulic Permeability Enhancement Technology in Coal Roadway Strip Mining

More Information
  • Published Date: December 19, 2018
  • In view of the current situation that the application conditions of hydraulic pressure relief and permeability enhancement technology are not clear and the effect evaluation index is unknown, by analyzing the technical principle of hydraulic measures, the applicable conditions and evaluation indexes are preliminarily determined: hydraulic flushing, hydraulic slotting and hydraulic fracturing are respectively applicable to soft coal seams with the coal solid coefficient f < 0.5, medium and hard coal seam with the coal solid coefficient f > 0.5, and medium hard coal seam with the coal solid coefficient f less than 1 and more than 0.5; the rate of discharge cuttings, coal output from drilling and pressure relief deformation, rate of water content or increment of coal seam are used as evaluation indexes respectively.
  • [1]
    袁亮,林柏泉,杨威.我国煤矿水力化技术瓦斯治理研究进展及发展方向[J].煤炭科学技术,2015,43(1):45-49.
    [2]
    袁志刚,任梅清,沈永红,等.穿层钻孔煤巷条带水力压裂防突技术及应用[J].重庆大学学报,2016,39(1):72-78.
    [3]
    赵俊峰.深部低透气性煤层水力冲孔强化增透技术研究[J].煤炭技术,2015,34(1):179-181.
    [4]
    曹建军,孟贤正,何清,等.新型钻扩一体水力化防突集成技术[J].煤炭科学技术,2009,37(11):40-44.
    [5]
    李经国,戴广龙,吴景民,等.水力冲孔后周围煤层应力分布规律研究[J].煤矿安全,2015,46(10):53-56.
    [6]
    中煤科工集团重庆研究院有限公司.石门揭煤高压水射流扩孔卸压和防突效果评价方法:CN104389636B[P].2017-01-25.
    [7]
    姜文忠.低渗透煤层高压旋转水射流割缝增透技术及应用研究[D].徐州:中国矿业大学,2009.
    [8]
    李晓红,王晓川,康勇,等.煤层水力割缝系统过渡过程能量特性与耗散[J].煤炭学报,2014,39(8):1404.
    [9]
    黄春明,代志旭,郭明功.高压水射流割缝增强瓦斯抽采及防喷孔技术研究[J].煤炭科学技术,2015,43(4):63-66.
    [10]
    国家安全生产监督管理总局,国家煤矿安全监察局.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009.
    [11]
    王志磊.低透气性煤层井下水力压裂技术研究[D].北京:中国矿业大学(北京),2015.
    [12]
    袁志刚.煤岩体水力压裂裂缝扩展及对瓦斯运移影响研究[D].重庆:重庆大学,2014.
    [13]
    焦先军,蔡峰.深部低透气性煤层水力压裂强化增透技术研究[J].煤矿安全,2017,48(10):82-85.
    [14]
    陈树亮.含瓦斯煤层水力致裂的瓦斯驱赶实验研究[D].徐州:中国矿业大学,2015.
    [15]
    袁亮,薛俊华,刘泉声,等.煤矿深部岩巷围岩控制理论与支护技术[J].煤炭学报,2011,36(4):535-543.
    [16]
    张军,王布川,樊利军,等.低透煤层井下水力压裂技术研究及应用[C]//2016年全国煤矿安全学术年会论文集.沈阳:辽宁科学技术出版社,2016.
    [17]
    郑同社.水力压裂煤储层卸压增透技术的适用性分析[J].河南理工大学学报(自然科学版),2013,32(5):29-32.
    [18]
    陈向军,程远平,王林.外加水分对煤中瓦斯解吸抑制作用试验研究[J].采矿与安全工程学报,2013,30(2):296-301.
    [19]
    陈向军,程远平,何涛,等.注水对煤的瓦斯扩散特性影响[J].采矿与安全工程学报,2013,30(3):443.
  • Related Articles

    [1]ZHANG Bei, YANG Yuanzhong. Study on Caving Property of Top Coal in Fully Mechanized Caving Face with Double Inclined and Large Dip Angle[J]. Safety in Coal Mines, 2020, 51(9): 211-216,221.
    [2]MA Duanzhi. Structural Charaeteristics and Adaptability of Four-leg Caving Top Coal Hydraulic Supports[J]. Safety in Coal Mines, 2019, 50(2): 137-139.
    [3]YUN Dongfeng, LIU Zhu, CHENG Wendong, FAN Zhendong, SU Puzheng, WANG Dongfang, ZHANG Yuanhao. Monitoring Analysis of Side Guard Plate Load of Fully Mechanized Caving Support in Large Dip Angle Thick Coal Seam[J]. Safety in Coal Mines, 2016, 47(10): 216-219.
    [4]CUI Jingkun, LI Haijiang, LI Xuning, LI Zhenyu, LI Mo, GU Kelei. Experiment of Processing Parameters for Loose Top-coal Under Caving Mining Technique[J]. Safety in Coal Mines, 2016, 47(4): 60-62,67.
    [5]LI Jianfeng, REN Wanxing, GUO Qing, FANG Shuqi, WANG Zhenfeng. Application of Superhigh-water Material in Fire Preventing and Extinguishing of Large Dip Angle Fully-mechanized Working Face[J]. Safety in Coal Mines, 2015, 46(10): 143-145,149.
    [6]WU Linping. Analysis of Support Stability for Fully Mechanized Caving Face in Steep Thick Coal Seam[J]. Safety in Coal Mines, 2015, 46(6): 224-227,230.
    [7]SONG Zhengyang, WANG Wei, ZHANG Jinwang, GUO Yao. Dynamic Bearing Characters and Numerical Analysis for Top Coal Caving Hydraulic Supports in Mindong No.1 Mine[J]. Safety in Coal Mines, 2015, 46(4): 199-202.
    [8]KONG Dezhong, PAN Weidong, LI Delin, SONG Wenbo. Cavability Analysis of Top-coal at Close Coal Seams Full Mechanized Caving Face with Large Height[J]. Safety in Coal Mines, 2014, 45(9): 216-218,225.
    [9]ZHANG Hai-feng. Application of Top Coal Caving Technology in Yangwangou Coal Mine[J]. Safety in Coal Mines, 2013, 44(5): 157-159.
    [10]ZHAO Guang-rong. Fully Mechanized Coal Caving Mining Technology in Soft and Thick Coal Seams with Large Inclination[J]. Safety in Coal Mines, 2012, 43(6): 41-43,44.

Catalog

    Article views (129) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return