• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
SONG Hongyang. Anti-upwind Device for Scraper Conveyor Passing Air Door in Yungaishan Coal Mine[J]. Safety in Coal Mines, 2018, 49(11): 88-90.
Citation: SONG Hongyang. Anti-upwind Device for Scraper Conveyor Passing Air Door in Yungaishan Coal Mine[J]. Safety in Coal Mines, 2018, 49(11): 88-90.

Anti-upwind Device for Scraper Conveyor Passing Air Door in Yungaishan Coal Mine

More Information
  • Published Date: November 19, 2018
  • This paper introduces the basic situation of anti-wind device for scraper conveyor passing air door, analyzes the problems of the anti-upwind device of scraper conveyor passing the air door in Yungaishan Coal Mine, studies the working principle of the anti-upwind device of the scraper conveyor. By referring to the successful experience of external units and combining with the actual conditions of the underground mine site and following the principle of convenience, economy and convenience, the scraper conveyor anti-upwind device for passing air door is processed and made.
  • [1]
    国家安全生产监督管理总局,国家煤矿安全监察局.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009.
    [2]
    刘三钧,尹胜波,于国林,等.防突风门溜子防逆风装置:ZL201520680894.3 [P].2016-01-13.
    [3]
    徐金陵.防突风门的防逆风装置设计[J].能源技术与管理,2014,39(4):119-121.
    [4]
    刘三钧.云盖山煤矿二矿风门防逆风装置[J].煤矿安全,2017,48(7):113-118.
    [5]
    杜结班,庞学文.全自动带式输送机通道防逆风装置设计[J].中州煤炭,2013(1):49-50.
    [6]
    陶柱,李双.突出煤层跨胶带风门防逆风装置的设计与应用[J].中州煤炭,2016(10):31-34.
    [7]
    赵克楠,王占新.新型防突风门的研制和应用[J].煤炭科学技术,2009(12):75-77.
    [8]
    冀畔俊,刘新杰.高突掘进工作面胶带输送机直接过风墙配套技术的应用[J].煤矿现代化,2010(5):21.
    [9]
    邢玉芬,卫营,白二娃.带式输送机过风门装置的应用[J].煤矿机电,2013(3):126-127.
    [10]
    孙迎辉.防突风门胶带过风门装置设计与应用[J].中州煤炭,2016(2):49-50.
  • Related Articles

    [1]DENG Qiucheng, CHEN Xi, FAN Chaonan, GE Shaocheng, MA Guoliang. Study on competitive adsorption characteristics of CH4 and CO2 in coal slit pores[J]. Safety in Coal Mines, 2025, 56(4): 50-57. DOI: 10.13347/j.cnki.mkaq.20230792
    [2]ZHANG Xiaolong, JIN Hongwei. Difference analysis of competitive adsorption of CH4/CO2/N2 by coal molecules[J]. Safety in Coal Mines, 2025, 56(2): 16-22. DOI: 10.13347/j.cnki.mkaq.20230422
    [3]ZHENG Haoge, YANG Hongmin, CHEN Liwei, LIU Yuan. Study on the effect of moisture on CO2 replacement of methane in coal[J]. Safety in Coal Mines, 2024, 55(5): 68-74. DOI: 10.13347/j.cnki.mkaq.20222043
    [4]DENG Xiaopeng, XIANG Jianhua. Molecular simulation study on competitive adsorption characteristics of CO2 and CH4 for 8# coal in Dongqu Mine[J]. Safety in Coal Mines, 2024, 55(3): 18-24. DOI: 10.13347/j.cnki.mkaq.20230796
    [5]LI Shuaikui, JIANG Wenzhong, TIAN Fuchao. Research progress on response of gas competitive adsorption characteristics on coal microstructure at different temperatures[J]. Safety in Coal Mines, 2022, 53(11): 167-175.
    [6]HUA Kunpeng, LU Yuankun. Adsorption mechanism of physical adsorption of oxygen by bituminous coal[J]. Safety in Coal Mines, 2022, 53(11): 48-55.
    [7]ZHU Lingqi, SANG Mingming, DU Jiaqi, LIU Chao. Construction of supercritical model for coal adsorbing CO based on adsorption potential theory[J]. Safety in Coal Mines, 2022, 53(9): 25-30.
    [8]GUO Huaiguang. Study on Difference of Binary Gas Competitive Adsorption of Soft and Hard Coal[J]. Safety in Coal Mines, 2019, 50(7): 37-41.
    [9]ZHANG Yanliang, YE Yulu. Refined Management of Coal Mine Safety Based on Cournot Oligarchies Competition Model[J]. Safety in Coal Mines, 2014, 45(12): 236-238.
    [10]KANG Zhi-gai. Using Safety Culture to Build Core Competitiveness of Enterprises[J]. Safety in Coal Mines, 2012, 43(7): 220-221.

Catalog

    Article views (145) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return