• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
ZHU Lingqi, SANG Mingming, DU Jiaqi, LIU Chao. Construction of supercritical model for coal adsorbing CO based on adsorption potential theory[J]. Safety in Coal Mines, 2022, 53(9): 25-30.
Citation: ZHU Lingqi, SANG Mingming, DU Jiaqi, LIU Chao. Construction of supercritical model for coal adsorbing CO based on adsorption potential theory[J]. Safety in Coal Mines, 2022, 53(9): 25-30.

Construction of supercritical model for coal adsorbing CO based on adsorption potential theory

More Information
  • Published Date: September 19, 2022
  • Under the influence of igneous rock invasion and burial depth, the adsorption capacity of CO of coal under high temperature and high pressure varies greatly, and CO attached to the surface of coal body under the condition of far more than the critical temperature and pressure is in supercritical state, resulting in the occurrence of abnormal CO surge in coal seams under such environmental conditions. Then it affects the accuracy of prediction of spontaneous combustion of coal seam by the change of CO concentration. In order to study the change of supercritical CO adsorption capacity of coal body when the environmental pressure exceeds the critical pressure of CO, and to predict the supercritical CO adsorption capacity of coal seam under different temperature and pressure, based on Polanyi adsorption potential theory, from the perspective of potential energy change, through combining isothermal adsorption experimental data, the relationship model between the pressure, temperature and CO adsorption capacity can be used to predict the adsorption capacity of CO gas on coal body at different temperatures and pressures, which provides an effective theoretical basis for improving the index gas prediction method of predicting spontaneous combustion of coal seam by CO concentration.
  • [1]
    Shen B H, Lei Y. Study on regional stratagem for coal mine disasters control and prevention in China[J]. Journal of Coal Science and Engineering, 2009, 15(3): 233.
    [2]
    Wang L. Controlling the effect of a distant extremely thick igneous rock in overlying strata on coal mine disasters[J]. Mining Science and Technology, 2010, 20(4): 10-515.
    [3]
    王燕华.矿井热害产生原因及防治措施[J].现代矿业, 2019,35(7): 274.

    WANG Yanhua. Cause of mine heat damage and prevention measures[J]. Modern Mining, 2019, 35(7): 274.
    [4]
    辛程鹏,刘义磊.煤自燃预测预报指标性气体实验研究[J].煤炭技术,2015,34(8):145-148.

    XIN Chengpeng, LIU Yilei. Research on indexity gas of spontaneous combustion of coal prediction[J]. Coal Technology, 2015, 34(8): 145-148.
    [5]
    黄兴利.黄陵二矿煤自燃预测预报指标气体分析试验[J].陕西煤炭,2021,40(5):17-20.

    HUANG Xingli. Gas analysis test of coal spontaneous combustion prediction index in Huangling No.2 Mine[J]. Shaanxi Coal, 2021, 40(5): 17-20.
    [6]
    董小明,武瑞龙,王超群,等.发耳煤矿近距离煤层自燃预测指标研究[J].煤矿现代化,2022,31(2): 6-10.

    DONG Xiaoming, WU Ruilong, WANG Chaoqun, et al. Experimental research on forecast index of coal spontaneous combustion of close distance coal seam group in Faer Mine[J]. Coal Mine Modernization, 2022, 31(2): 6-10.
    [7]
    Jun G, Hu W, Xue Z Z, et al. A method for evalua-ting the spontaneous combustion of coal by monitor in gvarious gases[J]. Process Safety and Environmental Pro-tection, 2019, 126: 223-231.
    [8]
    Li M, Li Z, Li F R, et al. Prediction indices and limiting parameters of coal spontaneous combustion in the Huainan mining area in China[J]. Fuel, 2020, 264: 116.
    [9]
    南峰.赋存CO气体的煤层自燃D-S证据融合预测研究[D].北京:北京科技大学,2017.
    [10]
    孙维丽,杨贵儒,黄涛.深孔断顶爆破导致的煤层CO气体涌出规律[J].煤矿安全,2021,52(4):206-211.

    SUN Weili, YANG Guiru, HUANG Tao. CO gas emission law of coal seam caused by deep-hole broken roof blasting[J]. Safety in Coal Mines, 2021, 52(4): 206-211.
    [11]
    陈健,李洋,刘文中,等.岩浆侵入对煤结构的影响评述[J].煤炭科学技术,2021,49(6):170-178.

    CHE Jian, LI Yang, LIU Wenzhong, et al. Review on impacts of igneous intrusion in coal measures on coal texture[J]. Coal Science and Technology, 2021, 49(6): 170-178.
    [12]
    李登云.火成岩侵入煤层的煤自燃标志气体优选[J].能源技术与管理,2016,41(1):126-128.
    [13]
    梁洪军,毕强,曲宝,等.火成岩侵入条件下煤低温氧化特性实验研究[J].煤矿安全,2018,49(8):43-47.

    LIANG Hongjun, BI Qiang, QU Bao, et al. Research on low temperature oxidation characteristics of coal under the condition of ligneous intrusion[J]. Safty in Coal Mines, 2018, 49(8): 43-47.
    [14]
    高春晓,毛竹,吴忠庆.超临界地质流体的物性[J].矿物岩石地球化学通报,2020,39(3):479-489.

    GAO Chunxiao, MAO Zhu, WU Zhongqing. The Physical properties of supercritical geofluids[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(3): 479-489.
    [15]
    任松宇,李斌,赵光明,等.超临界流体的特性及其应用进展[J].科技展望,2016,26(4):178.
    [16]
    Seo J, Seon-Gyu Choi, Koo M, et al. A study of igneous rocks related to Zn-Pb mineralization in the Shinyemi and Gagok deposits of the Taebaeksan Basin, South Korea[J]. Resource Geology, 2020, 70(3): 215.
    [17]
    Wang T, Tian S, Li G, et al. Selective adsorption of supercritical carbon dioxide and methane binary mixture in shale kerogen nanopores[J]. Journal of Natural Gas Science and Engineering, 2018, 50: 181-188.
    [18]
    Hao Y, Zhang J X, Nan Z, et al. Staged numerical simulations of supercritical CO2 fracturing of coal seams based on the extended finite element method[J]. Journal of Natural Gas Science and Engineering, 2019, 65: 275-283.
    [19]
    李伟.CO2-ECBM中煤储层结构对CH4和CO2吸附、解吸影响研究[D].太原:太原理工大学,2018.
    [20]
    温海龙.四川地区海相页岩等温吸附解吸特性研究[D].北京:中国石油大学(北京),2016.
    [21]
    李俊芳,翁红波,常勇强.无烟煤孔隙结构特征及其吸附特性研究[J].中国煤炭地质,2018,30(5):98.

    LI Junfang, WENG Hongbo, CHANG Yongqing. Study on anthracite pore structural and adsorptive features[J]. Coal Geology of China. 2018, 30(5): 98.
    [22]
    王兆丰,霍肖肖,徐青伟,等.朗格缪尔方程改直方式对瓦斯吸附常数计算结果的影响[J].能源与环保,2020,42(1):18-22.

    WANG Zhaofeng, HUO Xiaoxiao, XU Qingwei, et al. Influence of straightening method of Langmuir equation on calculation result of gas adsorption constant[J]. China Energy and Environmental Protection, 2020, 42(1): 18-22.
    [23]
    王红侠,李伟,唐元明,等.吸附势理论在活性炭对氙的吸附平衡研究中的应用[J].离子交换与吸附,2010,26(6):565.

    WANG Hongxia, LI Wei, TANG Yuanming, et al. Application of the adsorption potential theory to study adsorption equilibrium of xenon on activated charcoal[J]. Ion Exchange and Adsorption, 2010, 26(6): 565.
    [24]
    王玲玲,王兆丰,霍肖肖,等.高温高压下煤孔隙结构的变化对瓦斯吸附特性的影响[J].中国安全生产科学技术,2018,14(12):97-101.

    WANG Lingling, WANG Zhaofeng, HUO Xiaoxiao, et al. Influence of pore structure change on gas adsorption characteristics of coal under high temperature and high pressure[J]. Journal of Safety Science and Technology, 2018, 14(12):97-101.
    [25]
    李振海,裘舒年,李姗,等.基于活性炭吸脱附测试的杜比宁吸附方程修正表达式[J].同济大学学报(自然科学版),2019,47(12):1779-1784.

    LI Zhenhai, QIU shunian, LI Shan, et al. Modified expression of Dubinin-radushkevich equation based on adsorption and desorption tests of activated carbon[J]. Journal of Tongji University(Natural Science), 2019, 47(12): 1779-1784.
  • Related Articles

    [1]HAO Gang, YU Dinghao, XU Ying, WANG Li, LIU Hong. Numerical simulation and field test of height of caving zone and fracture zone in Heshan Coal Mine[J]. Safety in Coal Mines, 2023, 54(9): 174-179. DOI: 10.13347/j.cnki.mkaq.2023.09.023
    [2]WAN Feng, ZHANG Hongqing, ZHOU Peijun, GUO Jie. Numerical simulation study on effect of bedrock intrusion on strata behaviors of roadway[J]. Safety in Coal Mines, 2021, 52(10): 211-216.
    [3]WANG Xiaojian, LI Zhaosheng, ZHANG Liangliang, SUN Shiyuan, SHEN Renwei, FANG Gensheng. Numerical analysis of time-sharing differential freezing temperature field in coal mine[J]. Safety in Coal Mines, 2021, 52(7): 200-206.
    [4]LI Li. Application of Numerical Simulation in Analyzing Water Flowing Fractured Zone in Coal[J]. Safety in Coal Mines, 2017, 48(10): 160-162,166.
    [5]CUI Kai, ZHANG Zhao-qian, ZHANG Bai-sheng, XIE Fu-xing. Study on Strata Behavior Laws at Hard Roof Working Face in Jincheng Mining Area[J]. Safety in Coal Mines, 2013, 44(12): 166-168,171.
    [6]ZHANG Lian-ying, MA Chao, LI Yan. Numerical Simulation of Bolting Support Mechanism[J]. Safety in Coal Mines, 2013, 44(9): 71-73.
    [7]MA Mang-li. Strata Behavior Simulation and Field Measurement for Fully Mechanized Mining Face in Thick Seam[J]. Safety in Coal Mines, 2013, 44(8): 226-228.
    [8]WANG Yi-dong, JIANG Zhen-quan, ZHU Shu-yun, ZHANG Rui. Contrast of Numerical Simulation and Field Measurement on Deformation and Failure in Thick Seam Mining Floor[J]. Safety in Coal Mines, 2012, 43(10): 35-37.
    [9]CHANG Gang, JIANG Zhen-quan, JIA Xue-mei, ZHANG Rui, SUN Qiang. Study on Roof Strata Behavior Laws of A Certain Coal Mine During Mining[J]. Safety in Coal Mines, 2012, 43(7): 38-41.
    [10]YANG Ming, MENG Xiang-rui, GAO Zhao-ning, CHENG Xiang. Numerical Simulation of Ground Strata behavior Laws of Overlying Strata Movement at Stope[J]. Safety in Coal Mines, 2012, 43(6): 17-20,21.
  • Cited by

    Periodical cited type(19)

    1. 丁华忠,王力,景慎怀,黄寒静,陈洪岩,程合玉,李明强,曾庆辉,聂超. 松软煤层条带预抽底板梳状孔成孔及飞管完孔技术研究. 煤炭技术. 2025(03): 141-145 .
    2. 聂子淇,王超群. 煤矿复杂地层底板梳状定向钻孔钻进工艺技术研究. 能源与节能. 2024(01): 153-157 .
    3. 杨旭,王涛,李明. 孤岛工作面长水平深孔全长水力压裂卸压机理及多参量效果分析. 煤矿安全. 2024(02): 147-158 . 本站查看
    4. 武晓光,龙腾达,黄中伟,高文龙,李根生,谢紫霄,杨芮,鲁京松,马金亮. 页岩油多岩性交互储层径向井穿层压裂裂缝扩展特征. 石油学报. 2024(03): 559-573+585 .
    5. 张洪祯. 高位定向长钻孔瓦斯抽采技术在高山煤矿瓦斯治理中的应用. 科技创新与应用. 2024(20): 189-192 .
    6. 李定启,张浩海. 五阳煤矿松软煤层定向水射流卸压增透技术研究. 矿业研究与开发. 2024(09): 116-122 .
    7. 倪兴. 叠加效应下多孔水力割缝联合抽采参数优化研究. 工矿自动化. 2023(01): 146-152 .
    8. 李鹏. 水力压裂技术在煤矿瓦斯治理中的应用研究. 内蒙古煤炭经济. 2023(02): 4-6 .
    9. 武瑞龙. 复杂地层底板梳状定向钻孔抽采瓦斯技术研究. 煤炭工程. 2023(06): 79-82 .
    10. 王正帅. 碎软煤层条带定向长钻孔水力压裂强化瓦斯抽采技术研究. 中国煤炭. 2023(06): 46-52 .
    11. 贾猛. 郭庄矿井下新型水力压裂技术的应用分析. 山东煤炭科技. 2023(08): 188-190 .
    12. 李建军,刘文岗,杜君武,任健刚. 定向长钻孔分段水力压裂技术在布尔台煤矿的应用. 煤矿安全. 2022(04): 94-102 . 本站查看
    13. 吴晋军. 长平矿大功率定向长钻孔瓦斯抽采技术实践. 江西煤炭科技. 2022(02): 165-167+170 .
    14. 赵坤,李文,欧聪. 穿层梳状分支孔煤层段精准水力压裂工程试验. 煤矿安全. 2022(06): 89-95 . 本站查看
    15. 魏启磊. 松软低透煤层掘进工作面聚能爆注定向卸压一体化技术研究. 煤. 2022(08): 49-52 .
    16. 张士岭,宋志强. 基于速度势的多抽采钻孔干扰理论. 矿业研究与开发. 2022(09): 22-28 .
    17. 何明川. 层状构造煤层定向钻孔水力压裂瓦斯高效抽采技术. 煤矿安全. 2022(12): 62-67 . 本站查看
    18. 吕二忠. 水力冲孔技术在瓦斯抽采中的应用. 科学技术创新. 2021(29): 129-131 .
    19. 贺斌,雷鹏翔,弓仲标. 水力压裂技术在大柳塔煤矿52502工作面的应用. 煤炭科学技术. 2021(S2): 78-84 .

    Other cited types(0)

Catalog

    Article views (81) PDF downloads (77) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return