• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
WANG Yajun, XU Xiuyan, QIN Xianli, CHEN Haifeng. Prediction Research on Suppression and Isolation Effect for Foam Metal Based on ANN[J]. Safety in Coal Mines, 2017, 48(10): 220-223.
Citation: WANG Yajun, XU Xiuyan, QIN Xianli, CHEN Haifeng. Prediction Research on Suppression and Isolation Effect for Foam Metal Based on ANN[J]. Safety in Coal Mines, 2017, 48(10): 220-223.

Prediction Research on Suppression and Isolation Effect for Foam Metal Based on ANN

More Information
  • Published Date: October 19, 2017
  • Foam metal is a kind of new material that can inhibit gas explosion flame and pressure wave, and there are many factors that affect the effect of suppression and isolation, and the testing process is expensive and the period is long. We use artificial neural network (ANN) method to predict suppression and isolation effect of foam metal to reduce the material loss in experimental period, optimize parameters combination and improve the efficiency of the experiment. The results show that the BP neural network can be used for explosion suppression and isolation effect prediction of foam metal. The optimal network can predict the biggest attenuation of pressure and temperature, and the average error can reach 13% and 4% respectively when BP network has 10 neurons and its transfer function uses “logsig”, “purelin”. The research results show that artificial neural network can be used for suppression and isolation effect prediction of foam metal.
  • [1]
    魏春荣,徐敏强,王树桐.多孔材料抑制瓦斯爆炸火焰波的实验研究[J].中国矿业大学学报,2013,42(2):206-213.
    [2]
    邢志祥,张贻国,马国良.网状铝合金抑爆材料抑爆性能研究[J].中国安全科学学报,2012,22(2):75-80.
    [3]
    魏春荣.多孔材料对瓦斯爆炸抑制作用研究[D].哈尔滨:哈尔滨工业大学,2013.
    [4]
    武晓旭,龚孔成,贾明涛.煤矿事故预测的指数平滑-BP神经网络混合模型研究[J].中国安全生产科学技术,2014,10 (9):165-169.
    [5]
    张水,曹庆贵,王帅.瓦斯涌出量灰色-RBF网络模型的建立与应用[J].中国矿业,2016,25(10):107-109.
    [6]
    魏连江,梁伟,高金晓,等.矿井瓦斯监测数据趋势预测研究进展[J].煤矿安全,2016,47(10):149-152.
    [7]
    张楠,王亮清,葛云峰,等.基于因子分析的BP神经网络在岩体变形模量预测中的应用[J].工程地质学报,2016,24(1):87-95.
    [8]
    刘子亮,于妍宁,王雪松,等.基于神经网络的爆破块度预测[J].辽宁工程技术大学学报,2016,39(4):303-306.
    [9]
    曹玲芝,安治恒.BP和RBF神经网络在起重机钢丝绳断丝数量预测中的比较研究[J].煤矿机械,2016,37(1):187-189.
    [10]
    徐星,郭兵兵,王公忠.人工神经网络在矿井多水源识别中的应用[J].中国安全生产科学技术,2016,12(1):181-185.
    [11]
    魏春荣,李晓光,孙建华,等.多孔材料阻隔爆效果评估方法[J].湖南科技大学学报(自然科学版),2014,29(4):1-6.
  • Related Articles

    [1]LIU Feng. Prediction of gas emission based on PCA-SAPSO-BP neural network[J]. Safety in Coal Mines, 2023, 54(4): 60-68.
    [2]ZHAO Wei, CHEN Peihong, CAO Yang. Prediction model of coal seam gas content based on ACSOA optimized BP neural network[J]. Safety in Coal Mines, 2022, 53(1): 174-180.
    [3]LIU Tuanjie, ZHAO Xiangzhuo, HAN Yongliang, LI Yunpeng, CHEN Xi. Strength prediction of solid wastes filling body based on GRA--BP neural network[J]. Safety in Coal Mines, 2021, 52(9): 231-238.
    [4]WANG Shenhao, XIE Wanli, XI Jiami, JING Xu. Prediction of mine collapse risk based on GIS and BP neural network[J]. Safety in Coal Mines, 2021, 52(9): 218-223,230.
    [5]ZHANG Fan, ZHONG Hao. Research on Mine Thermodynamic Disaster Monitoring Based on BP Neural Network[J]. Safety in Coal Mines, 2020, 51(11): 216-220.
    [6]XIE Lirong, WANG Jinrui, Mutellip Ahmat, LU Peng, NIU Yongchao. Prediction for Coal Mine Gas Emission Based on LVQ-GA-BP Neural Network[J]. Safety in Coal Mines, 2017, 48(12): 150-152,156.
    [7]LI Hongliang, HUA Xinzhu, ZHANG Zhonghao. Distribution Prediction of Advanced Abutment Pressure of Based on BP Neural Network Model[J]. Safety in Coal Mines, 2015, 46(2): 209-212.
    [8]PAN Bin, LI Yuan-long, GE Xiao-ming, LAI Chuan-long, CHEN Jing-can. Overlying Rock Movement BP Neural Networks Prediction Based on Orthogonal Experiment Design[J]. Safety in Coal Mines, 2013, 44(10): 209-211.
    [9]XU Dong-jing, SHI Long-qing, QIU Mei, SUN Qi, LIU Lei. Forecast of Small Structure for Mine Based on BP Neural Networks[J]. Safety in Coal Mines, 2013, 44(2): 50-52,56.
    [10]DAI Hong-lei, HAN Li-tao, CHEN Chuan-fa. Prediction Model of Gas Disaster Based on Quasi-Newton Algorithm BP Neural Network[J]. Safety in Coal Mines, 2012, 43(10): 11-14.

Catalog

    Article views (159) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return