YI Xin, LI Yuhan, BAI Zujin, et al. Experiment research on the influence of cored heat pipe on temperature field of high temperature coal pile[J]. Safety in Coal Mines, 2024, 55(9): 22−29. DOI: 10.13347/j.cnki.mkaq.20231335
    Citation: YI Xin, LI Yuhan, BAI Zujin, et al. Experiment research on the influence of cored heat pipe on temperature field of high temperature coal pile[J]. Safety in Coal Mines, 2024, 55(9): 22−29. DOI: 10.13347/j.cnki.mkaq.20231335

    Experiment research on the influence of cored heat pipe on temperature field of high temperature coal pile

    More Information
    • Received Date: September 14, 2023
    • Revised Date: November 08, 2023
    • In order to study the influence characteristics of cored heat pipes on the temperature field of coal pile and the feasibility of preventing the spontaneous combustion of coal pile, the heat transfer law of two kinds of heat pipes with core and without core under different heat source temperature conditions was tested by experiments, and the heat transfer effect of different arrangement modes of cored heat pipes on large area coal pile was analyzed by numerical simulation. The results show that under different heat source temperature conditions, the maximum cooling range of cored heat pipe is 130.6 K, and the maximum cooling range of non-cored heat pipe is 118.6 K. The influence of heat pipes on the internal temperature field of coal pile can be divided into three regions according to the distance: high efficiency cooling zone, transition zone and slow cooling zone; the high temperature area inside the coal pile is smaller with triangular tube group arrangement; the best heat transfer effect is obtained when the spacing between tubes is 25 cm; compared with the tube group arrangement, the distance between tubes has more influence on the heat transfer effect of the core heat pipe.

    • [1]
      闫沁阳,刘星魁,常绪华. 露天煤堆群自燃特性的数值模拟[J]. 矿业安全与环保,2020,47(5):29−33.

      YAN Qinyang, LIU Xingkui, CHANG Xuhua. Numerical simulation of spontaneous combustion characteristics of open-pit coal piles[J]. Mining Safety & Environmental Protection, 2020, 47(5): 29−33.
      [2]
      曲国娜,李红健,贾廷贵,等. 煤堆自燃特征的试验研究与数值模拟[J]. 中国安全科学学报,2021,31(12):69−77.

      QU Guona, LI Hongjian, JIA Tinggui, et al. Experimental and numerical simulation and study of spontaneous combustion characteristic of coal piles[J]. China Safety Science Journal, 2021, 31(12): 69−77.
      [3]
      KONG B, LI Z, YANG Y, et al. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China[J]. Environmental Science and Pollution Research, 2017, 24(30): 23453−23470. doi: 10.1007/s11356-017-0209-6
      [4]
      易欣,葛龙,张少航,等. 基于指标气体法对水浸煤的氧化特性研究[J]. 煤炭科学技术,2023,51(03):130−136.

      YI Xin, GE Long, ZHANG Shaohang, et al. Research on oxidation characteristics of aqueous coal based on index gas method[J]. Coal Science and Technology, 2023, 51(03): 130−136.
      [5]
      ADAMUS A. Review of the use of nitrogen in mine fires[J]. Mining Technology (Transactions of the Institution of Mining and Metallurgy, Section A), 2002, 111(2): 89−98. doi: 10.1179/mnt.2002.111.2.89
      [6]
      金永飞,李海涛,李贝,等. 储煤堆(矸石山)自燃灭火弹控制技术[J]. 煤矿安全,2014,45(10):47−50.

      JIN Yongfei, LI Haitao, LI Bei, et al. Anti-fire bomb control technology in coal storage pile (gangue hill) spontaneous combustion[J]. Safety in Coal Mines, 2014, 45(10): 47−50.
      [7]
      LI Q W, XIAO Y, ZHONG K Q, et al. Overview of commonly used materials for coal spontaneous combustion prevention[J]. Fuel (Guildford), 2020, 275: 117981. doi: 10.1016/j.fuel.2020.117981
      [8]
      徐兵魁. 多年冻土区热棒路基设计计算[D]. 北京:中国铁道科学研究院,2006.
      [9]
      冯乾,王景刚,李敏婕,等. 热管治理煤矸石山自燃技术的实验研究[J]. 煤炭与化工,2019,42(8):110−114.

      FENG Qian, WANG Jinggang, LI Minjie, et al. Experimental study on heat pipe treatment of coal gangue mountain spontaneous combustion technology[J]. Coal and Chemical Industry, 2019, 42(8): 110−114.
      [10]
      ALIZEDEH M, GANJI D D. Heat transfer characteristics and optimization of the efficiency and thermal resistance of a finned thermosyphon[J]. Applied Thermal Engineering, 2021, 183: 116136. doi: 10.1016/j.applthermaleng.2020.116136
      [11]
      DEMIR H, KOYUN A, ATAYILMAZ S. O, et al. Investigation of the effects of geometrical parameters on heat transfer from buried finned pipes[J]. Journal of Mechanical Science and Technology, 2013, 27(8): 2497−2506. doi: 10.1007/s12206-013-0637-2
      [12]
      KIM J S, KIM Y, SHIN D H, et al. Heat transfer and flow visualization of a two−phase closed thermosiphon using water, acetone, and HFE7100[J]. Applied Thermal Engineering, 2021, 187: 116571. doi: 10.1016/j.applthermaleng.2021.116571
      [13]
      AYTAC Z. Experimental and numerical comparative investigation of optimum working fluid ratio for thermosyphon heat pipes[J]. Heat Transfer Research, 2022, 53(6): 61−78. doi: 10.1615/HeatTransRes.2022041506
      [14]
      LI B, DENG J, XIAO Y, et al. Heat transfer capacity of heat pipes: An application in coalfield wildfire in China[J]. Heat and Mass Transfer, 2018, 54(6): 1755−1766. doi: 10.1007/s00231-017-2262-6
      [15]
      XIAO Y, ZHONG K Q, TIAN J, et al. Thermal extraction from a low-temperature stage of coal pile spontaneous combustion by two-phase closed thermosyphon[J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(2): 587−597. doi: 10.1007/s10973-021-10678-6
      [16]
      LU N, LI J, SUN Y. Research progress and prospect of heat pipe capillary wicks[J]. Frontiers in heat and mass transfer, 2022, 18.
      [17]
      张志刚,段彩侠. 热管置入式墙体传热优化研究[J]. 太阳能学报,2016,37(4):945−950. doi: 10.3969/j.issn.0254-0096.2016.04.021

      ZHANG Zhigang, DUAN Caixia. Research on heat transfer optimization of heat pipe embedded wall[J]. Acta Energiae Solaris Sinica, 2016, 37(4): 945−950. doi: 10.3969/j.issn.0254-0096.2016.04.021
      [18]
      李贝,高伟,邓军,等. 基于热棒防灭火技术的煤自燃区域热迁移特征[J]. 中南大学学报(自然科学版),2020,51(4):1135−1144. doi: 10.11817/j.issn.1672-7207.2020.04.028

      LI Bei, GAO Wei, DENG Jun, et al. Thermal migration characteristics of coal fire area based on fire prevention technology with heat pipe[J]. Journal of Central South University (Science and Technology), 2020, 51(4): 1135−1144. doi: 10.11817/j.issn.1672-7207.2020.04.028
      [19]
      张跃辉,张永波,高彤. 环境温度影响下自燃煤矸石山热管降温技术研究[J]. 矿业安全与环保,2023,50(4):30−35.

      ZHANG Yuehui, ZHANG Yongbo, GAO Tong. Experimental study on heat−pipe cooling technology of spontaneously combustible gangue hills under the influence of ambient temperature[J]. Mining Safety & Environmental Protection, 2023, 50(4): 30−35.
      [20]
      LI C, GUAN Y, JIANG C, et al. Study on heat transfer characteristics of the deep−buried ground heat exchanger under different multi-pipe layouts[J]. Geothermics, 2022, 100: 102343. doi: 10.1016/j.geothermics.2021.102343
      [21]
      王建国,周侗柱,郑晨光. 热管充液率对高温煤堆内部温度场的影响分析[J]. 矿业安全与环保,2021,48(3):39−42.

      WANG Jianguo, ZHOU Tongzhu, ZHENG Chenguang. Study on the effect of heat pipe filling rate on the internal temperature field of high temperature coal pile[J]. Mining Safety & Environmental Protection, 2021, 48(3): 39−42.
      [22]
      ZU S, LIAO X, HUANG Z, et al. Visualization study on boiling heat transfer of ultra−thin flat heat pipe with single layer wire mesh wick[J]. International Journal of Heat and Mass Transfer, 2021, 173: 121239. doi: 10.1016/j.ijheatmasstransfer.2021.121239
      [23]
      战洪仁,张倩倩,史胜,等. 带有内螺纹的重力热管仿真模拟研究[J]. 沈阳化工大学学报,2020,34(4):352−357. doi: 10.3969/j.issn.2095-2198.2020.04.013

      ZHAN Hongren, ZHANG Qianqian, SHI Sheng, etal. Numerical simulation of gravity heat pipe with internal threads[J]. Journal of Shenyang University of Chemical Technology, 2020, 34(4): 352−357. doi: 10.3969/j.issn.2095-2198.2020.04.013
      [24]
      陈富财,钱益昊,罗英,等. 倾角对重力热管携带极限影响的实验研究[J]. 核动力工程,2020,41(S2):21−26.

      CHEN Fucai, QIAN, Yihao, LUO Ying, et al. Experimental research on effect of inclination angle on carrying limit of gravity heat pipe[J]. Nuclear Power Engineering, 2020, 41(S2): 21−26.
      [25]
      王建国,郑晨光,王延秋. 冷凝段翅片类型对热管抑制煤自燃的降温效应影响研究[J]. 矿业安全与环保,2020,47(5):13−17.

      WANG Jianguo, ZHEN Chenguang, WANG Yanqiu. Study on the influence of fin types in condensation section on the cooling effect of the heat pipe to suppress coal spontaneous combustion[J]. Mining Safety & Environmental Protection, 2020, 47(5): 13−17.
    • Related Articles

      [1]WANG Chen, YAO Zhishu, DIAO Naihao, WANG Jiaqi, QIAO Shuaixing, XU Yongjie. Evolution characteristics analysis of temperature - stress field in the early stage of borehole precast construction in western China[J]. Safety in Coal Mines, 2023, 54(4): 140-147.
      [2]WANG Xiaojian, LI Zhaosheng, ZHANG Liangliang, SUN Shiyuan, SHEN Renwei, FANG Gensheng. Numerical analysis of time-sharing differential freezing temperature field in coal mine[J]. Safety in Coal Mines, 2021, 52(7): 200-206.
      [3]QUAN Xin, ZHANG Yaping, NING Ning, WANG Liwei, WANG Jianguo, MA Li. Study on influence factors of spontaneous combustion heat transfer of coal pile by heat pipe[J]. Safety in Coal Mines, 2021, 52(6): 52-57.
      [4]CHEN Qinghua, SUN Meihua, SU Guoyong. Influence of Gravity Heat Hipe on Temperature Field in Coal Pile[J]. Safety in Coal Mines, 2018, 49(11): 211-214.
      [5]WANG Peng, LIN Bin, HOU Haijie, LONG Yi. Research on Development Laws of Freezing Wall Temperature Field in a Mine Auxiliary Shaft[J]. Safety in Coal Mines, 2018, 49(8): 214-217.
      [6]WANG Jiayuan, QIU Lei, MA Yunlong. Numerical Simulation of Temperature-humidity Field Characteristics of Fully Mechanized Face Under the Influence of Air Flow[J]. Safety in Coal Mines, 2017, 48(12): 179-182.
      [7]SHI Jianwen, WANG Zelu, SUN Ke, WANG Yakun. Analysis of Eddy Current Loss and Temperature Field of Permanent Magnetic Coupling for Mine[J]. Safety in Coal Mines, 2017, 48(10): 101-104,107.
      [8]WANG Fei, YANG Jun, MIAO Bo. Numerical Modeling of Distribution Characteristics for Collapse Column Temperature Field Under the Action of Seepage[J]. Safety in Coal Mines, 2017, 48(3): 167-170,174.
      [9]CHEN Liu, HAN Fei. Distribution Laws of Temperature Field in Mine Surrounding Rock[J]. Safety in Coal Mines, 2017, 48(2): 56-59,64.
      [10]LIANG Bo, XI Jiami, CHEN Xinnian, YANG Gengshe, LI Borong, QU Yonglong. Monitoring and Analysis on Shaft Freezing Temperature Field of Cretaceous Water-rich Bedrock in Xinzhuang Coal Mine[J]. Safety in Coal Mines, 2014, 45(8): 192-195.

    Catalog

      Article views (32) PDF downloads (9) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return