• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
WANG Chen, YAO Zhishu, DIAO Naihao, WANG Jiaqi, QIAO Shuaixing, XU Yongjie. Evolution characteristics analysis of temperature - stress field in the early stage of borehole precast construction in western China[J]. Safety in Coal Mines, 2023, 54(4): 140-147.
Citation: WANG Chen, YAO Zhishu, DIAO Naihao, WANG Jiaqi, QIAO Shuaixing, XU Yongjie. Evolution characteristics analysis of temperature - stress field in the early stage of borehole precast construction in western China[J]. Safety in Coal Mines, 2023, 54(4): 140-147.

Evolution characteristics analysis of temperature - stress field in the early stage of borehole precast construction in western China

More Information
  • Published Date: April 19, 2023
  • In order to prevent the crack phenomenon of prefabricated shaft lining wall construction in winter in western China, the evolution characteristics of temperature-stress field in the early stage of prefabricated shaft lining wall construction were studied. Firstly, based on FLAC3D software, a numerical analysis model of early temperature-stress field of inner steel sheet concrete composite shaft lining wall structure was established based on the well drilling project of central return air shaft by drilling method in Kekegai Coal Mine in western China. By simulating the field construction conditions, the distribution law of early temperature stress of shaft lining wall is obtained, and the high risk area prone to early temperature cracks is determined. Then, according to the simulation results, the range analysis method is used to obtain the influence factors of the early temperature stress of the precast shaft lining wall from large to small: convective heat dissipation coefficient, ambient temperature, concrete strength grade; the field measurement results show that the simulated temperature distribution is in good agreement with the engineering measurement. The research results can provide technical support for prevention and control of prefabricated shaft lining wall construction cracks in winter in western China.
  • [1]
    姚直书,程桦,荣传新.西部地区深基岩冻结井筒井壁结构设计与优化[J].煤炭学报,2010,35(5):760-764.

    YAO Zhishu, CHENG Hua, RONG Chuanxin. Shaft structural design and optimization of deep freezing bedrock shaft in west area[J]. Journal of China Coal Society, 2010, 35(5): 760-764.
    [2]
    窦玉康.浅谈塔然高勒矿井建设的经验教训[J].煤炭工程,2012,(S1):27-28.
    [3]
    谭杰,刘志强,宋朝阳,等.我国矿山竖井凿井技术现状与发展趋势[J].金属矿山,2021(5):13-24.

    TAN Jie, LIU Zhiqiang, SONG Zhaoyang, et al. Status and development trend of mine shaft sinking technique in China[J]. Metal Mine, 2021(5): 13-24.
    [4]
    刘峰,曹文君,张建明,等.我国煤炭工业科技创新进展及“十四五”发展方向[J].煤炭学报,2021,46(1):1-15.

    LIU Feng, CAO Wenjun, ZHANG Jianming, et al. Current technological innovation and development direction of the14th Five-Year Plan period in China coal industry[J]. Journal of China Coal Society, 2021, 46(1): 1-15.
    [5]
    刘志强,宋朝阳,程守业,等.千米级竖井全断面科学钻进装备与关键技术分析[J].煤炭学报,2020,45(11):3645-3656.

    LIU Zhiqiang, SONG Zhaoyang, CHENG Shouye, et al. Equipment and key technologies for full-section scientifically drilling of kilometer-level vertical shafts[J].Journal of China Coal Society, 2020, 45(11): 3645-3656.
    [6]
    杨爱东,邹淑平.巨野煤田郭屯矿井钻井法凿井技术研究[J].中国矿业,2003(6):51-53.

    YANG Aidong, ZOU Shuping. Study on shaft sinking technology by boring method in Guotun Mine of Juye coalfield[J]. China Mining Magazine, 2003(6): 51-53.
    [7]
    洪伯潜,臧桂茂,谭杰.龙固矿近600 m深钻井井壁设计与安装[J].中国煤炭,2004(6):9-11.

    HONG Boqian, ZANG Guimao, TAN Jie. Design and installation of sidewall of 600 m-deep-well in Longgu Mine[J]. China Coal, 2004(6): 9-11.
    [8]
    刘志强,吴玉华,王从平,等.钻井法凿井“一钻成井”工艺[J].建井技术,2011,32(Z1):8-10.
    [9]
    姚直书,王超,程桦,等.钻井法快速凿井高强井壁结构设计优化与应用[J].中国矿业大学学报,2019,48(4):742-749.

    YAO Zhishu, WANG Chao, CHENG Hua, et al. Design optimization and engineering application of high strength shaft lining for rapid construction with drilling shaft sinking method[J]. Journal of China University of Mining & Technology, 2019, 48(4): 742-749.
    [10]
    刘红飞.高强预制混凝土井壁的裂缝控制[J].混凝土与水泥制品,2009(5):33-36.
    [11]
    阮静,叶见曙,谢发祥,等.高强度混凝土水化热的研究[J].东南大学学报(自然科学版),2001(3):53-56.

    RUAN Jing, YE Jianshu, XIE Faxiang, et al. Study on heat of hydration on high strength concrete[J]. Journal of Southeast University(Natural Science Edition), 2001(3): 53-56.
    [12]
    管华栋,周晓敏,徐衍,等.冻结立井井壁早期温度应力计算研究[J].金属矿山,2018(5):44-47.

    GUAN Huadong, ZHOU Xiaomin, XU Yan, et al. Calculation of the early thermal stress in freezing vertical shaft lining[J]. Metal Mine, 2018(5): 44-47.
    [13]
    张基伟,李方政,喻新皓,等.深部冻结井筒内壁早期温度-应力场演化特征研究[J].煤炭科学技术,2021,49(2):69-76.

    ZHANG Jiwei, LI Fangzheng, YU Xinhao, et al. Research on evolution characteristics of early-age temperature-stress field of inner lining at deep frozen shaft[J]. Coal Science and Technology, 2021, 49(2): 69-76.
    [14]
    李方政,喻新皓,张基伟.深部冻结井壁早期温度应力计算方法研究[J/OL].金属矿山: [2022-7-22]https://kns.cnki.net/kcms/detail/34.1055.TD.20211217.1930.002.html.

    LI Fangzheng, YU Xinhao, ZHANG Jiwei. Study on the calculation method of early temperature stress of deep frozen shaft wall[J]. Metal Mine: [2022-7-22]. https://kns.cnki.net/kcms/detail/34.1055.TD.20211217.1930.002.html
    [15]
    崔德密,沈敏,顾洪,等.泵浇混凝土闸墩裂缝成因计算分析[J].水利水电技术,2001(10):10-12.
    [16]
    刘成保.钢筋混凝土钻井井壁早期裂缝的控制技术[J].山西建筑,2017,43(24):106-107.

    LIU Chengbao. Early cracks controlling technologies of steel reinforced concrete drilling well wall[J]. Shanxi Architecture, 2017, 43(24): 106-107.
    [17]
    顾成东.龙固煤矿主井井筒高强度预制混凝土井壁冬季施工技术[J].建井技术,2006(6):12-13.
    [18]
    王自强,杨述起,徐玉川.钢筋混凝土井壁冬季施工技术措施[J].探矿工程(岩土钻掘工程),2007(12):50-51.
    [19]
    张涛.深厚复杂地层中冻结井壁温度场演化规律研究[D].徐州:中国矿业大学,2018.
    [20]
    刁奶毫.深厚冲积层冻结井筒外壁早期热力耦合分析及开裂机理研究[D].淮南:安徽理工大学,2022.
  • Related Articles

    [1]DING Yuan. Key technology of sensor in coal mine monitoring system based on hostless communication[J]. Safety in Coal Mines, 2023, 54(6): 207-211.
    [2]WANG Yanbin. Development of data acquisition instrument for coal and gas outburst based on wireless communication[J]. Safety in Coal Mines, 2022, 53(12): 101-106.
    [3]HUANG Zengbo. Design and implementation of portable CAN bus analyzer in underground coal mine[J]. Safety in Coal Mines, 2022, 53(1): 134-138.
    [4]TAN Kai, XU Jin, SHAO Yan. A Monitoring Substation with Electric Port Long-distance Communication Function[J]. Safety in Coal Mines, 2020, 51(11): 129-132.
    [5]SHAO Yan. Application of Communication Mode of Irregularly Controlled RS485 Bus in Monitoring System for Coal Mine Safety[J]. Safety in Coal Mines, 2020, 51(7): 117-120.
    [6]MA Long. Application of CAN Communication Technology in Coal Mine Monitoring System[J]. Safety in Coal Mines, 2019, 50(12): 106-109.
    [7]YIN Peng, XIAO Kaitai, XIAO Changliang, ZENG Zhi. Data Acquisition Method of Coal Mine Safety Monitoring System[J]. Safety in Coal Mines, 2019, 50(8): 104-106.
    [8]ZHOU Haikun. Design of Data Acquisition System for High Concurrent Coal Mine Safety Monitoring[J]. Safety in Coal Mines, 2018, 49(6): 85-87,91.
    [9]WEN Liang, YE Jin-Jiao, WANG Hong-Yao. Coal Mine Safety Monitoring System Based on LonWorks Bus[J]. Safety in Coal Mines, 2012, 43(8): 104-106.
    [10]CUI Hong-Ming. The Design of CAN Bus Repeater[J]. Safety in Coal Mines, 2012, 43(8): 102-103,106.
  • Cited by

    Periodical cited type(5)

    1. 夏利玲,孙翠玲,张慧,黄春香. 基于CAN和REST物联网技术的智能矿山安全检测系统研发. 金属矿山. 2024(03): 215-220 .
    2. 刘梅华,黄增波,陈伟. 在线升级矿用传感器设计. 煤矿机械. 2022(03): 1-4 .
    3. 钱霄杰,殷勤,朱超群,刘茂兵. CAN总线的输送控制系统集成化研究. 单片机与嵌入式系统应用. 2021(11): 51-55 .
    4. 张鑫,张向顺,赵惟诚,郭永志. 基于DSP和CAN的机电环境设备监控系统模块化设计. 工业仪表与自动化装置. 2021(06): 21-25+87 .
    5. 郭海兵,张全柱,邓永红. 一种新型光纤CAN控制器通信系统研究. 华北科技学院学报. 2021(06): 35-42+54 .

    Other cited types(1)

Catalog

    Article views (26) PDF downloads (29) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return