• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

表面活性剂对无烟煤煤尘的抑尘效果研究

李仲文, 张志强, 陈曦, 邬丛珊

李仲文, 张志强, 陈曦, 邬丛珊. 表面活性剂对无烟煤煤尘的抑尘效果研究[J]. 煤矿安全, 2022, 53(2): 27-32.
引用本文: 李仲文, 张志强, 陈曦, 邬丛珊. 表面活性剂对无烟煤煤尘的抑尘效果研究[J]. 煤矿安全, 2022, 53(2): 27-32.
LI Zhongwen, ZHANG Zhiqiang, CHEN Xi, WU Congshan. Study on dust suppression effect of surfactant on anthracite coal dust[J]. Safety in Coal Mines, 2022, 53(2): 27-32.
Citation: LI Zhongwen, ZHANG Zhiqiang, CHEN Xi, WU Congshan. Study on dust suppression effect of surfactant on anthracite coal dust[J]. Safety in Coal Mines, 2022, 53(2): 27-32.

表面活性剂对无烟煤煤尘的抑尘效果研究

Study on dust suppression effect of surfactant on anthracite coal dust

  • 摘要: 研究了脂肪醇聚氧乙烯醚(AEO9)、十二烷基硫酸钠(SDS)和十二烷基三甲基溴化胺(DTAB)3种表面活性剂溶液对晋城无烟煤呼吸性粉尘的抑尘效果。在临界胶束质量分数(CMC)下,利用悬滴法和座滴法分别测定了表面活性剂溶液的动态表面张力和在无烟煤表面的动态接触角;利用分子动力学模拟研究了表面活性剂与无烟煤的吸附强度、胶束的稳定性以及单分子在水中的扩散系数。实验结果表明:AEO9溶液对煤尘的降尘效果最好,SDS次之,DTAB最差;在临界胶束质量分数(CMC)以上,悬滴平衡态表面张力值依次是AEO99(865.3 ms)9溶液在无烟煤表面的动态接触角下降最快。模拟结果表明:AEO9与无烟煤表面的相互作用强度最强,DTAB次之,SDS最弱;虽然AEO9在水中的扩散系数小于SDS和DTAB,但AEO9在溶液中形成的胶束最容易解离;这应该是AEO9溶液抑尘效果较好的微观原因。
    Abstract: In this paper, the dust inhibition effect of fatty alcohol polyoxyethylene ether(AEO9), sodium dodecyl sulfate(SDS) and dodecyl trimethylamine bromide(DTAB) on respirable dust from Jincheng anthracite was studied. The dynamic surface tension of the surfactant solution and the dynamic contact angle on the surface of anthracite were measured by hanging drop method and pedicle drop method at CMC concentration; the adsorption strength of the surfactant and anthracite, the stability of the micelle and the diffusion coefficient of the single molecule in water were studied by molecular dynamics simulation. Experimental results show that AEO9 solution has the best dust reduction effect on coal dust, followed by SDS and DTAB the worst. Above the critical micelle concentration(CMC), the equilibrium surface tension of the hanging drop is AEO99(865.3 ms)9 solution on the surface of anthracite drops the fastest. The simulation results show that the interaction strength between AEO9 and the surface of anthracite is the strongest, followed by DTAB, and SDS is the weakest. Although the diffusion coefficient of AEO9 in water is smaller than that of SDS and DTAB, but the micelles formed by AEO9 in solution are most easily dissociated. It is the reason why the AEO9 solution has better dust suppression effect.
  • [1] 樊晶光,张建芳,王海椒,等.我国煤矿尘肺病防治现状、问题与对策建议[J].职业卫生与应急救援,2021, 39(1):1-5.

    FAN Jingguang, ZHANG Jianfang, WANG Haijiao, et al. Present situation and problem of pneumoconiosis prevention and control in coal mines and proposed countermeasures in China[J]. Occupational Health and Emergency Rescue, 2021, 39(1): 1-5.

    [2] 刘小锋.煤尘危害分析与综合防尘降尘技术的应用[J].环球人文地理,2016(14):194.
    [3] 陈静.煤尘危害及抑尘技术进展[J].中国化工贸易,2012,4(9):187.
    [4] Qingzhao Li, Baiquan Lin, Shuai Zhao, et al. Surface physical properties and its effects on the wetting behaviors of respirable coal mine dust[J]. Powder Technology, 2013, 233: 137-145.
    [5] Jie W, He Y, Yu Z, et al. Research on cationic surfactant adsorption performance on different density lignite particles by XPS nitrogen analysis[J]. Fuel, 2018, 213: 48-54.
    [6] Mishra S K, Panda D. Studies on the adsorption of Brij-35 and CTAB at the coal-water interface[J]. Journal of colloid and interface science, 2005, 283(2): 294-299.
    [7] Wang L, Hu Y, Liu J, et al. Flotation and adsorption of muscovite using mixed cationic-nonionic surfactants as collector[J]. Powder Technology, 2015, 276: 26-33.
    [8] Yuan M, Nie W, Zhou W, et al. Determining the effect of the non-ionic surfactant AEO9 on lignite adsorption and wetting via molecular dynamics(MD) simulation and experiment comparisons[J]. Fuel, 2020, 278: 118339.
    [9] Yangchao Xia, Zili Yang, Rui Zhang, et al. Enhancement of the surface hydrophobicity of low-rank coal by adsorbing DTAB: An experimental and molecular dynamics simulation study[J]. Fuel, 2019, 239: 145-152.
    [10] Meng J, Yin F, Li S, et al. Effect of different concentrations of surfactant on the wettability of coal by molecular dynamics simulation[J]. International Journal of Mining Science and Technology, 2019, 29(4): 577-584.
    [11] 刘程.表面活性剂应用手册[M].北京:化学工业出版社,2004.
    [12] 魏帅,严国超,张志强,等.晋城无烟煤的分子结构特征分析[J].煤炭学报,2018,43(2):555-562.

    WEI Shuai, YAN Guochao, ZHANG Zhiqiang, et al. Molecular structure analysis of Jincheng anthracite coal[J]. Journal of China Coal Society, 2018, 43(2): 555-562.

    [13] 胡炜,吕萍,赵贯甲.高精度悬滴法液体表面张力实验系统研制[J].实验技术与管理,2015,32(6):69.

    HU Wei, LYU Ping, ZHAO Guanjia. Development of system with axisymmetric drop shape method for surface tension measurement[J]. Experimental Technology and Management, 2015, 32(6): 69.

    [14] Yan G, Ren G, Bai L, et al. Molecular Model Construction and Evaluation of Jincheng Anthracite[J]. ACS Omega, 2020, 5(19): 10663-10670.
    [15] Bunte S W, Sun H. Molecular Modeling of Energetic Materials: The Parameterization and Validation of Nitrate Esters in the COMPASS Force Field[J]. Journal of Physical Chemistry B, 2000, 104(11): 2477-2489.
    [16] Nos’e S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1): 511-511.
    [17] 冯天祥,王万绪,杜志平,等.乙醇对AEO9水溶液的表面性质和相行为的影响[J].日用化学工业,2012, 42(3):157-161.

    FNEG Tianxiang, WANG Wanxu, DU Zhiping, et al. Influence of ethanol on surface properties and phase behavior of AEO9 aqueous solution[J]. China Surfactant Detergent & Cosmetics, 2012, 42(3): 157-161.

    [18] 王洁樱.SDS的提纯及其临界胶束浓度的测定[J].化工设计通讯,2017,43(3):136.

    WANG Jieying. Purification of SDS and determination of its critical micelle concentration[J]. Chemical Engineering Design Communications, 2017, 43(3): 136.

    [19] 秦苗,王红艳,罗牧晨,等.DTAB在非极性溶剂中的聚集行为[J].山东农业工程学院学报,2018,35(1):36-40.

    QIN Miao, WANG Hongyan, LUO Muchen, et al. Aggregation behavior of DTAB in non-polar solvents[J]. The Journal of Shandong Agriculture and Engineering University, 2018, 35(1): 36-40.

    [20] Zhang Z G Y H. Interaction of nonionic surfactant AEO9 with ionic surfactants[J]. Journal of Zhejiang University Science A, 2005, 6B(6): 597-601.
    [21] Hernáinz F, Caro A. Variation of surface tension in aqueous solutions of sodium dodecyl sulfate in the flotation bath[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 196(1): 19-24.
    [22] Mohamed A B, Maryse H, Angeliki G, et al. Investigation of SDS, DTAB and CTAB micelle microviscosities by electron spin resonance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 290(1-3): 206-212.
    [23] Moncayo Riascos I, De Leon J, Hoyos B A. Molecular Dynamics Methodology for the Evaluation of the Chemical Alteration of Wettability with Organosilanes[J]. Energy & Fuels, 2016, 30(5): 3605-3614.
    [24] Rai B, Sathish P, Tanwar J, et al. A molecular dynamics study of the interaction of oleate and dodecylammonium chloride surfactants with complex aluminosilicate minerals[J]. Journal of Colloid and Interface Science, 2011, 362(2): 510-516.
    [25] Li J, Han Y, Qu G, et al. Molecular dynamics simulation of the aggregation behavior of N-Dodecyl-N, N-Dimethyl-3-Ammonio-1-Propanesulfonate/Sodium dodecyl benzene sulfonate surfactant mixed system at oil/water interface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 531: 73-80.
    [26] Sharma V K, Srinivasan H, Mitra S, et al. Effects of Hydrotropic Salt on the Nanoscopic Dynamics of DTAB Micelles[J]. The Journal of Physical Chemistry. B, 2017, 121(22): 5562-5572.
    [27] Kondori J, Zendehboudi S, James L. Molecular dynamic simulations to evaluate dissociation of hydrate structure II in the presence of inhibitors: A mechanistic study[J]. Chemical Engineering Research and Design, 2019, 149: 81-94.
  • 期刊类型引用(13)

    1. 金靖艳,唐明云,江丙友,王乐乐,陈功辉,王冬. 多组分表面活性剂复配对烟煤润湿效果研究. 煤矿安全. 2024(01): 100-106 . 本站查看
    2. 秦汝祥,王修兵,陈国栋,徐少伟,谷传尧. 表面活性剂复配对1/3焦煤润湿性能的影响研究. 绥化学院学报. 2024(03): 145-150 . 百度学术
    3. 王志坚. 复配表面活性剂对岩尘润湿性的影响. 陕西煤炭. 2024(04): 55-59+65 . 百度学术
    4. 汪志强,刘涛. 高效固结矿用抑尘剂的制备与性能研究. 能源与环保. 2024(05): 30-35+44 . 百度学术
    5. 王岩. 不同含氧官能团对煤润湿性影响的分子动力学模拟研究. 中国安全生产科学技术. 2024(07): 114-120 . 百度学术
    6. 寇德瑞. 表面活性剂的苯环结构对煤尘润湿性的影响机制. 矿业研究与开发. 2024(09): 143-150 . 百度学术
    7. 王银辉. SDS与AEO_3复配对褐煤润湿性的影响分子动力学模拟研究. 煤矿安全. 2024(09): 78-84 . 本站查看
    8. 郭佳策. 烟煤润湿性能影响机理研究. 内蒙古煤炭经济. 2024(16): 1-3 . 百度学术
    9. 易双霞,袁梅,何季民,胡金春,张瑞嘉. 表面活性剂对无烟煤润湿性的影响实验研究. 煤矿安全. 2024(10): 38-45 . 本站查看
    10. 王成,彦鹏,代振华,陆斌,葛少成,赵伟智. 微米活性液滴场致荷电效果及煤尘润湿性能研究. 煤矿安全. 2024(10): 46-52 . 本站查看
    11. 李辉,刘涛,徐腾飞. 煤矿高效膜型抑尘剂的研制与性能表征. 能源与环保. 2024(10): 59-63 . 百度学术
    12. 张迎新,唐露,王佳伟,杨康. 化学团聚剂对煤尘团聚性能的影响. 黑龙江科技大学学报. 2023(04): 492-496 . 百度学术
    13. 韩方伟,胡福宏,奚志林,赵月,刘美. AEO_3润湿褐煤性能及机理. 煤炭学报. 2023(10): 3766-3775 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  67
  • HTML全文浏览量:  4
  • PDF下载量:  52
  • 被引次数: 18
出版历程
  • 发布日期:  2022-02-19

目录

    /

    返回文章
    返回