• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

微米活性液滴场致荷电效果及煤尘润湿性能研究

王成, 彦鹏, 代振华, 陆斌, 葛少成, 赵伟智

王成,彦鹏,代振华,等. 微米活性液滴场致荷电效果及煤尘润湿性能研究[J]. 煤矿安全,2024,55(10):46−52. DOI: 10.13347/j.cnki.mkaq.20240023
引用本文: 王成,彦鹏,代振华,等. 微米活性液滴场致荷电效果及煤尘润湿性能研究[J]. 煤矿安全,2024,55(10):46−52. DOI: 10.13347/j.cnki.mkaq.20240023
WANG Cheng, YAN Peng, DAI Zhenhua, et al. Study on field charged effect of micron-activated droplets and wettability of coal dust[J]. Safety in Coal Mines, 2024, 55(10): 46−52. DOI: 10.13347/j.cnki.mkaq.20240023
Citation: WANG Cheng, YAN Peng, DAI Zhenhua, et al. Study on field charged effect of micron-activated droplets and wettability of coal dust[J]. Safety in Coal Mines, 2024, 55(10): 46−52. DOI: 10.13347/j.cnki.mkaq.20240023

微米活性液滴场致荷电效果及煤尘润湿性能研究

基金项目: 国家自然科学基金资助项目(52174195,52274220);山西省基础研究计划资助项目(20220321221061)
详细信息
    作者简介:

    王 成(1975—),男,宁夏中宁人,高级工程师,硕士,从事采矿工程及煤矿粉尘治理方面的工作。E-mail:1240263941@qq.com

  • 中图分类号: TD714.4;X964

Study on field charged effect of micron-activated droplets and wettability of coal dust

  • 摘要:

    水雾荷电与溶液活性处理作为2种增效降尘手段,独立使用时均表现出良好的降尘效果。为探究二者联合使用对微细粉尘的沉降效果,选取十二烷基硫酸钠表面活性剂配置活性溶液,利用紫铜芒刺环形电极进行电晕荷电,在微米尺度液滴场致荷电的背景下,探究了微米活性液滴的荷电效果及其对无烟煤的润湿性。结果表明:活性溶液相较于纯水对电场的响应更为敏感;水雾荷电与溶液活性处理对于增强液滴破碎、减小液滴粒径及增强溶液润湿性能表现出协同效应;微米荷电活性水雾相较于普通水雾对无烟煤尘的捕集效率更高,对全尘、呼吸性粉尘的沉降效率分别高达91.77%、90.45%。

    Abstract:

    Water mist charging and solution active treatment, as two kinds of efficient dust removal methods, showed good dust removal effect when they used independently. In order to explore the settling effect of the combined use of the two on fine dust, sodium dodecyl sulfate (SDS) surfactant was used to prepare the active solution, and copper burr ring electrode was used for corona charging. Under the background of micron droplet field charging, the charging effect of micron active droplet and its wettability to anthracite were investigated. The results show that the active solution is more sensitive to electric field than pure water. Water mist charging and solution activity treatment showed synergistic effects on enhancing droplet fragmentation, reducing droplet size and enhancing solution wettability. Compared with ordinary water mist, micron-charged active water mist has higher capture efficiency for anthracite dust, and sedimentation efficiency for total dust and respirable dust is up to 91.77% and 90.45%.

  • 图  1   SDS分子结构

    Figure  1.   Molecular structure of SDS

    图  2   不同电压下电极间电场分布

    Figure  2.   Electric field distribution between electrodes at different voltages

    图  3   水雾降尘系统

    Figure  3.   Water mist dust reduction system

    图  4   纯水与活性溶液荷电效果

    Figure  4.   Charging effect of pure water and surfactant solution

    图  5   不同处理手段微米水雾的雾滴特征粒径

    Figure  5.   Characteristic particle size of droplets of micron water mist with different treatments

    图  6   雾滴粒径分布

    Figure  6.   Particle size distribution of droplets

    图  7   不同处理手段溶液与无烟煤的固-液接触角

    Figure  7.   Solid-liquid contact angle between solution and anthracite with different treatments

    图  8   不同处理手段水雾接触角变化率

    Figure  8.   Change rate of spray contact angle with various treatments

    表  1   喷雾降尘前后粉尘质量浓度及降尘效率

    Table  1   Dust mass concentration and dust reduction efficiency before and after spraying

    降尘措施 降尘前粉尘质量浓度/
    (mg∙m−3
    降尘后粉尘质量浓度/
    (mg∙m−3
    除尘效率/
    %
    全尘 呼吸性
    粉尘
    全尘 呼吸性
    粉尘
    全尘 呼吸性
    粉尘
    荷电活性水雾 663.81 234.53 54.62 22.39 91.77 90.45
    普通水雾 662.44 235.58 189.24 78.32 71.44 66.76
    下载: 导出CSV
  • [1] 刘峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五” 发展方向[J]. 煤炭学报,2021,46(1):1−15.

    LIU Feng, CAO Wenjun, ZHANG Jianming, et al. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry[J]. Journal of China Coal Society, 2021, 46(1): 1−15.

    [2] 刘晴,郝永江,赵振保. 综采工作面粉尘分布规律及防尘措施研究[J]. 煤矿安全,2023,54(6):47−53.

    LIU Qing, HAO Yongjiang, ZHAO Zhenbao. Study on dust distribution and dust prevention measures in fully mechanized coal face[J]. Safety in Coal Mines, 2023, 54(6): 47−53.

    [3] 杨洁,胡胜勇,刘湃,等. 矿用湿式除尘器研发现状与发展趋势[J]. 煤矿安全,2023,54(8):186−194.

    YANG Jie, HU Shengyong, LIU Pai, et al. Research status and development trend of wet dust collector for mine[J]. Safety in Coal Mines, 2023, 54(8): 186−194.

    [4] 朱晓彤,胡胜勇,孙健,等. 煤矿综掘工作面湿式控尘技术研究进展及展望[J]. 煤矿安全,2023,54(1):29−37.

    ZHU Xiaotong, HU Shengyong, SUN Jian, et al. Research progress and prospect of wet dust control technology in fully mechanized excavation face[J]. Safety in Coal Mines, 2023, 54(1): 29−37.

    [5] 马莲,李雨成,任建业,等. 综掘工作面内外双旋流风幕发生装置设计与控尘效果研究[J]. 煤矿安全,2023,54(11):188−197.

    MA Lian, LI Yucheng, REN Jianye, et al. Designing and dust control performance of internal and external dual swirl air curtain in fully mechanized excavation face[J]. Safety in Coal Mines, 2023, 54(11): 188−197.

    [6]

    FORBES T P, DEGERTEKIN F L, FEDOROV A G. Droplet charging regimes for ultrasonic atomization of a liquid electrolyte in an external electric field[J]. Physics of Fluids, 2011, 23(1): 012104. doi: 10.1063/1.3541818

    [7]

    WANG P, LI C, ZHANG M, et al. Density enhancement of nano-sized and submicron-sized water droplets induced by charges released from corona discharge[J]. Journal of Physics D: Applied Physics, 2020, 53(44): 445203. doi: 10.1088/1361-6463/aba5c2

    [8] 孙伊伟,覃粒子. 感应荷电中带电装置参数影响的实验研究[J]. 兵器装备工程学报,2018,39(2):172−176.

    SUN Yiwei, QIN Lizi. Experimental study on the influence of charging device parameters in induction charged spray[J]. Journal of Ordnance Equipment Engineering, 2018, 39(2): 172−176.

    [9]

    QI C J, YANG X, YAO J W, et al. Effect of charged spray evaporation of desulfurization waste water on fine particle removal efficiency of electrostatic precipitator[J]. Process Safety and Environmental Protection, 2023, 179: 99−107. doi: 10.1016/j.psep.2023.08.095

    [10] 张政,葛少成,孙丽英,等. SDS对烟煤润湿性能和机理的分子模拟研究[J]. 中国安全生产科学技术,2023,19(4):86−92.

    ZHANG Zheng, GE Shaocheng, SUN Liying, et al. Molecular simulation study on wettability performance and mechanism of SDS on bituminous coal[J]. Journal of Safety Science and Technology, 2023, 19(4): 86−92.

    [11]

    HAO H X, LEVEN I, HEAD-GORDON T. Can electric fields drive chemistry for an aqueous microdroplet?[J]. Nature Communications, 2022, 13: 280. doi: 10.1038/s41467-021-27941-x

    [12] 廖洋波,黄先富,卢应发,等. 十二烷基硫酸钠水溶液液滴在微凹槽阵列PDMS表面上的电润湿行为实验研究[J]. 表面技术,2023,52(12):178−187.

    LIAO Yangbo, HUANG Xianfu, LU Yingfa, et al. Experimental investigation of electrowetting of aqueous sodium dodecyl sulfate droplets on micro-grooved non-wetting surfaces[J]. Surface Technology, 2023, 52(12): 178−187.

    [13] 熊光婷,葛少成,孙丽英,等. 磁化荷电液滴除尘机理及碰撞浸润煤尘数值仿真[J]. 煤炭学报,2023,48(9):3441−3450.

    XIONG Guangting, GE Shaocheng, SUN Liying, et al. Numerical simulation on dust removal mechanism of magnetoelectric droplets and collision wetting coal dust[J]. Journal of China Coal Society, 2023, 48(9): 3441−3450.

    [14] 韩方伟,张金宜,赵月,等. 液滴在球形粉尘表面的动力润湿特性[J]. 煤炭学报,2021,46(8):2614−2622.

    HAN Fangwei, ZHANG Jinyi, ZHAO Yue, et al. Kinetic wetting characteristics of droplet on the surface of spherical dust[J]. Journal of China Coal Society, 2021, 46(8): 2614−2622.

    [15] 李仲文,张志强,陈曦,等. 表面活性剂对无烟煤煤尘的抑尘效果研究[J]. 煤矿安全,2022,53(2):27−32.

    LI Zhongwen, ZHANG Zhiqiang, CHEN Xi, et al. Study on dust suppression effect of surfactant on anthracite coal dust[J]. Safety in Coal Mines, 2022, 53(2): 27−32.

    [16] 陈炫来,严国超,阳湘琳,等. SDS/SDBS对无烟煤润湿性影响的分子动力学模拟[J]. 煤炭科学技术,2022,50(12):185−193.

    CHEN Xuanlai, YAN Guochao, YANG Xianglin, et al. Molecular dynamics simulation of the effect of SDS/SDBS on the wettability of anthracite[J]. Coal Science and Technology, 2022, 50(12): 185−193.

    [17] 汪李龙,康健婷,康天合,等. SDS溶液改变无烟煤润湿性与冲击产尘粒径分布的实验研究[J]. 煤矿安全,2020,51(1):30−37.

    WANG Lilong, KANG Jianting, KANG Tianhe, et al. Experimental study on influence of SDS solution on wettability and grain size distribution of impact crushing dust production in anthracite[J]. Safety in Coal Mines, 2020, 51(1): 30−37.

    [18] 王健,刘荣华,王鹏飞,等. 常用压力式喷嘴雾化特性及降尘性能研究[J]. 煤矿安全,2019,50(8):36−40.

    WANG Jian, LIU Ronghua, WANG Pengfei, et al. Study on atomization characteristics and dust reduction performance of common pressure nozzles[J]. Safety in Coal Mines, 2019, 50(8): 36−40.

    [19] 王鹏飞,李泳俊,刘荣华,等. 内混式空气雾化喷嘴雾化特性及降尘效率研究[J]. 煤炭学报,2019,44(5):1570−1579.

    WANG Pengfei, LI Yongjun, LIU Ronghua, et al. Spray characteristics and dust removal efficiency of internal-mixing air atomizing nozzle[J]. Journal of China Coal Society, 2019, 44(5): 1570−1579.

    [20] 张天,荆德吉,葛少成,等. 超音速汲水虹吸气动雾化降尘技术[J]. 煤炭学报,2021,46(12):3912−3921.

    ZHANG Tian, JING Deji, GE Shaocheng, et al. Supersonic siphon suction water aerodynamic atomization in dust removal[J]. Journal of China Coal Society, 2021, 46(12): 3912−3921.

    [21] 赵伟智,葛少成,张小伟,等. 超音速虹吸式空气雾化喷嘴雾化特性研究[J]. 矿业安全与环保,2023,50(4):19−24.

    ZHAO Weizhi, GE Shaocheng, ZHANG Xiaowei, et al. Study on atomization characteristics of supersonic siphon type air atomizing nozzle[J]. Mining Safety & Environmental Protection, 2023, 50(4): 19−24.

    [22]

    YANG Y, ZHANG H, LI C, et al. Diffusion charging of nanometer-sized liquid aerosol particles[J]. Journal of Physics D: Applied Physics, 2021, 54(17): 175204. doi: 10.1088/1361-6463/abdefd

图(8)  /  表(1)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  1
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-04
  • 修回日期:  2024-04-07
  • 刊出日期:  2024-10-19

目录

    /

    返回文章
    返回