• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

鄂尔多斯盆地深部煤层开采导水断裂带发育特征

秦伟, 李文平

秦伟, 李文平. 鄂尔多斯盆地深部煤层开采导水断裂带发育特征[J]. 煤矿安全, 2021, 52(6): 217-222.
引用本文: 秦伟, 李文平. 鄂尔多斯盆地深部煤层开采导水断裂带发育特征[J]. 煤矿安全, 2021, 52(6): 217-222.
QIN Wei, LI Wenping. Development characteristics of water conduction fracture zone in deep coal seam mining in Ordos Basin[J]. Safety in Coal Mines, 2021, 52(6): 217-222.
Citation: QIN Wei, LI Wenping. Development characteristics of water conduction fracture zone in deep coal seam mining in Ordos Basin[J]. Safety in Coal Mines, 2021, 52(6): 217-222.

鄂尔多斯盆地深部煤层开采导水断裂带发育特征

Development characteristics of water conduction fracture zone in deep coal seam mining in Ordos Basin

  • 摘要: 鄂尔多斯盆地多数煤矿主采侏罗系煤层,开采条件具有大采高、大采深的特点,顶板含水层众多并严重威胁矿井安全,开展侏罗系煤层上覆顶板导水断裂带高度的研究尤为重要。以鄂尔多斯某矿为例,通过理论计算、数值模拟以及相似类比法等手段,对采空区顶板的导水断裂带的发育高度和裂采比进行预测分析。结果表明:裂采比为22.07,导水断裂带发育高度大约为154.48 m,类比所得拟合公式所预测该矿的导水断裂带高度与理论计算值误差较小。
    Abstract: Most coal mines in Ordos Basin are mainly Jurassic coal seams. The mining conditions are characterized by large mining height and depth. The roof aquifer is numerous and poses a serious threat to mine safety. It is particularly important to study the height of the water-conducting fracture zone of the roof over Jurassic coal seam. Taking a mine in Ordos Basin as an example, through theoretical calculation, numerical simulation, and similar analogy methods, the development height and fracture-mining ratio of the water conducting fracture zone on the roof of the goaf are predicted and analyzed. The results show that the fracture-mining ratio is 22.07 and the development height of the water-conducting fracture zone is about 154.48 m. The fitting formula obtained by analogy predicts that the height of the water-conducting fracture zone of the mine is close to the theoretical calculation value.
  • [1] 胡小娟,李文平,曹丁涛,等.综采导水裂隙带多因素影响指标研究与高度预计[J].煤炭学报,2012,37(4):613-620.

    HU Xiaojuan, LI Wenping, CAO Dingtao, et al. Index of multiple factors and expected height of fully mechanized water flowing fractured zone[J]. Journal of China coal Society, 2012, 37(4): 613-620.

    [2] 黄浩,方刚,梁向阳.呼吉尔特矿区侏罗系深埋煤层导水断裂带发育高度研究[J].煤矿安全,2019,50(10):22-28.

    HUANG hao, FANG Gang, LIANG Xinagyang. Study on development height of jurassic water flowing fractured zone of deep buried coal seam in Hujiert Mining Area[J]. Safety in Coal Mines, 2019, 50(10): 22-28.

    [3] 王永国,王明,许蓬.巴彦高勒煤矿3-1煤层顶板垮落裂缝带发育特征[J].煤田地质与勘探,2019,47(S1):37-42.

    WANG Yongguo, WANG Ming, XU Peng. Characteristics of collapsed fractured zone development of No.3-1 seam roof in Bayanggaoler Coal Mine[J]. Coal Geology & Exploration, 2019, 47(S1): 37-42.

    [4] 丁航.补连塔煤矿大采高工作面覆岩运移规律[J].煤矿安全,2019,50(12):179-183.

    DING Hang. Law of overlying strata movement in large mining height wording face of Bulianta Coal Mine[J]. Safety in Coal Mines, 2019, 50(12): 179-183.

    [5] 昝军才,窦桂东,吴章涛,等.厚煤层综放开采对覆岩含水层影响评价及防治水措施研究[J].煤炭工程,2019,51(6):120-123.

    ZAN Juncai, DOU Guidong, WU Zhangtao, et al. Study on influence evaluation and prevention measures of fully mechanized caving mining in thick coal seam on overburden aquifer[J]. Coal Engineering, 2019, 51(6): 120-123.

    [6] 钱鸣高,许家林,王家臣.再论煤炭的科学开采[J].煤炭学报,2018,43(1):1-13.

    QIAN Minggao, XU Jialin, WANG Jiachen. Further on the sustainable mining of coal[J]. Journal of China coal Society,2018, 43(1): 1-13.

    [7] 张东升,李文平,来兴平,等.我国西北煤炭开采中的水资源保护基础理论研究进展[J].煤炭学报,2017, 42(1):36-43.

    ZHANG Dongsheng, LI Wenping, LAI Xingping,et al. Development on basic theory of water protection during coal mining in northwest China[J]. Journal of China coal Society, 2017, 42(1): 36-43.

    [8] 李文平,王启庆,刘士亮,等.生态脆弱区保水采煤矿井(区)等级类型[J].煤炭学报,2019,44(3):718.

    LI Wenping, WANG Qiqin, LIU Shiliang, et al. Grade types of water-preserved coal mining coalmines in ecologically fragile area[J]. Journal of China coal Society, 2019, 44(3): 718.

    [9] 缪协兴,王安,孙亚军,等.干旱半干旱矿区水资源保护性采煤基础与应用研究[J].岩石力学与工程学报,2009,28(2):217-227.

    MIAO Xiexing, WANG An, SUN Yajun, et al. Research on basic theory of mining with water resources protection and its application to arid and semi-arid mining areas[J]. Chinese Journal of Rock Mechanics and Engineer, 2009, 28(2): 217-227.

    [10] 钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[M].徐州:中国矿业大学出版社,2003.
  • 期刊类型引用(6)

    1. 张健. 坚硬顶板切顶合理参数模拟研究. 山西冶金. 2024(01): 115-116+119 . 百度学术
    2. 刘坤,滕腾,杨耀辉,李梓昊,丁鹤. 不同采高下深部煤层覆岩应力场与塑性区演化数值模拟研究. 采矿技术. 2024(04): 41-45 . 百度学术
    3. 宋士康,REN Ting,冯海龙,窦林名,孙炳清,张涛,任康江. 高承压水与深部应力耦合作用下顶板运移及应力显现规律. 煤矿安全. 2023(04): 169-174 . 本站查看
    4. 马祥,白贤栖,曹安业,曾海利,黄锐,张德兵,秦续峰,张润兵. 基于微震分布特征的覆岩结构演化规律研究. 煤矿安全. 2023(12): 80-87 . 本站查看
    5. 侯恩科,刘博,龙天文,徐维,魏启明,马进勇. 深埋缓倾斜双煤层开采导水断裂带发育规律研究. 煤矿安全. 2022(03): 50-57 . 本站查看
    6. 关众. 霍洛湾煤矿22206工作面水体下安全开采技术. 煤矿安全. 2022(12): 54-61 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  42
  • HTML全文浏览量:  0
  • PDF下载量:  20
  • 被引次数: 9
出版历程
  • 发布日期:  2021-06-19

目录

    /

    返回文章
    返回