• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

高承压水与深部应力耦合作用下顶板运移及应力显现规律

宋士康, REN Ting, 冯海龙, 窦林名, 孙炳清, 张涛, 任康江

宋士康, REN Ting, 冯海龙, 窦林名, 孙炳清, 张涛, 任康江. 高承压水与深部应力耦合作用下顶板运移及应力显现规律[J]. 煤矿安全, 2023, 54(4): 169-174.
引用本文: 宋士康, REN Ting, 冯海龙, 窦林名, 孙炳清, 张涛, 任康江. 高承压水与深部应力耦合作用下顶板运移及应力显现规律[J]. 煤矿安全, 2023, 54(4): 169-174.
SONG Shikang, REN Ting, FENG Hailong, DOU Linming, SUN Bingqing, ZHANG Tao, REN Kangjiang. Roof migration and stress development under the coupling effect of high confined water and deep stress[J]. Safety in Coal Mines, 2023, 54(4): 169-174.
Citation: SONG Shikang, REN Ting, FENG Hailong, DOU Linming, SUN Bingqing, ZHANG Tao, REN Kangjiang. Roof migration and stress development under the coupling effect of high confined water and deep stress[J]. Safety in Coal Mines, 2023, 54(4): 169-174.

高承压水与深部应力耦合作用下顶板运移及应力显现规律

Roof migration and stress development under the coupling effect of high confined water and deep stress

  • 摘要: 基于彬长矿区高家堡矿4#煤深部工作面上方存在洛河组砂岩含水层的地质条件,探讨了含水层与动力灾害孕育的关系,介绍了彬长矿区4#煤上方顶板含水层的形成原因和赋存状况;基于工作面涌水量数据,考证了工作面支架阻力与涌水量变化之间关系,阐述了涌水量变化与微震频次之间的时空关联特征,解释了微震与涌水之间时空关联及其产生机理。强调了工作面微震-涌水日报对防冲和防治水的重要意义;阐述了涌水增加后承压水运动在工作面产生的动静载,提出应重点关注水量突增后工作面的动力灾害危险。
    Abstract: Based on the geological condition of Luohe Formation sandstone aquifer above the deep working face of 4# coal in Gaojiapu Mine, Binchang Mining area, the relationship between aquifer and dynamic disaster breeding is discussed. Firstly, the formation and its setting condition of the aquifer above 4# coal seam are introduced. Based on field water inflow monitoring data, we examined the relationship between the resistance of the support and the change of water inflow. The temporal and spatial correlation between micro seismicity and water movement is analyzed and identified, which will offer significant value for the early-warning of the dynamic hazards and water inrush. We expound the dynamic and static load of confined water movement on the working face after the increase of water inrush, and point out that it is important to pay more attention to the dynamic disaster risk of the working face after the water surge.
  • [1] 潘俊锋,毛德兵,蓝航,等.我国煤矿冲击地压防治技术研究现状及展望[J].煤炭科学技术,2013,41(6):21-25.

    PAN Junfeng, MAO Debing, LAN Hang, et al. Study status and prospects of mine pressure bumping control technology in China[J]. Coal Science & Technology, 2013, 41(6): 21-25.

    [2] 姜耀东,潘一山,姜福兴,等.我国煤炭开采中的冲击地压机理和防治[J].煤炭学报,2014,39(2):205-213.

    JIANG Yaodong, PAN Yishan, JIANG Fuxing, et al. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society, 2014, 39(2): 205-213.

    [3] 范立民.陕西省煤矿水害类型及典型水害[C]//中国地质学会2013年学术年会.北京:中国地质学会,2013:49-52.
    [4] 秦伟,李文平.鄂尔多斯盆地深部煤层开采导水断裂带发育特征[J].煤矿安全,2021,52(6):217-222.

    QIN Wei, LI Wenping. Development characteristics of water conduction fracture zone in deep coal seam mining in Ordos Basin[J]. Safety in Coal Mines, 2021, 52(6): 217-222.

    [5] 高虎,程洪涛,位小辉,等.极复杂水文地质条件综放工作面防治水技术[J].煤炭科学技术,2020,48(S1):150-155.

    GAO Hu, CHENG Hongtao, WEI Xiaohui, et al. Technology of water prevention and control for extremely coal complex hydrogeological conditions in fully-mechanized top coal caving face[J]. Coal Science and Technology, 2020, 48(S1): 150-155.

    [6] 高喜才,伍永平.富水覆岩特厚煤层开采突水危险性与防控技术[J].煤矿安全,2014,45(1):54-56.

    GAO Xicai, WU Yongping. Water-inrush risk and control technology in extra-thick seam of water-rich overburden[J]. Safety in Coal Mines, 2014, 45(1): 54-56.

    [7] 谢渊,王剑,殷跃平,等.鄂尔多斯盆地白垩系含水层沉积学初探[J].地质通报,2003,22(10):818-828.

    XIE Yuan, WANG Jian, YIN Yueping, et al. Sedimentology of cretaceous aquifers in the Ordos basin[J]. Regional Geology of China, 2003, 22(10): 818-828.

    [8] 孙福勋.巨厚含水层下煤层顶板突水机理及水害危险性预测——以高家堡煤矿为例[D].青岛:山东科技大学, 2017.
    [9] 张严静.永陇—彬长矿区煤层顶板离层水形成机理及其预测[D].西安:西安科技大学, 2015.
    [10] 谢渊,邓国仕,刘建清,等.鄂尔多斯盆地白垩系主要含水岩组沉积岩相古地理对地下水水化学场形成和水质分布的影响[J].沉积与特提斯地质,2012,32(3):64-74.

    XIE Yuan, DENG Guoshi, LIU Jianqing, et al. The effects of sedimentary facies and palaeogeography on the formation and distribution of the deep groundwater of the Cretaceous strata in the Ordos Basin[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(3): 64-74.

    [11] 刘洋,吴桂义,孔德中,等.大采高工作面支架阻力确定及顶板运移规律的采厚效应分析[J].煤矿安全,2018,49(2):202-205.

    LIU Yang, WU Guiyi, KONG Dezhong, et al. Mining thickness effect analysis for support capacity determination and roof movement laws of large mining height working face[J]. Safety in Coal Mines, 2018, 49(2): 202-205.

    [12] 于雷,闫少宏,刘全明.特厚煤层综放开采支架工作阻力的确定[J].煤炭学报,2012,37(5):737-742.

    YU Lei, YAN Shaohong, LIU Quanming. Determination of support working resistance of top coal caving in extra thick coal seam[J]. Journal of China Coal Society, 2012, 37(5): 737-742.

    [13] 郭晓强,窦林名,陆菜平,等.采动诱发断层活化的微震活动规律研究[J].煤矿安全,2011,42(1):26-30.

    GUO Xiaoqiang, DOU Linming, LU Caiping. Research on the microseismic activity of fault reaction induced by coal mining[J]. Safety in Coal Mines, 2011, 42(1): 26-30.

    [14] 煤炭工业部.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M].北京:煤炭工业出版社,1986.
    [15] 陈忠辉,林忠明,谢和平,等.三维应力状态下岩石损伤破坏的卸荷效应[J].煤炭学报,2004,29(1):31 -35.

    CHEN Zhonghui, LIN Zhongming, XIE Heping, et al. Damage study on brittle rock failure under complicated stress[J]. Journal of China Coal Society, 2004, 29(1): 31-35.

    [16] 姚强岭,王伟男,杨书懿,等.含水率影响下砂质泥岩直剪特性及声发射特征[J].煤炭学报,2021,46(9):2910-2922.

    YAO Qiangling, WANG Weinan, YANG Shuyi, et al. Direct shear and acoustic emission characteristics of sandy mudstone under the effect of moisture content[J]. Journal of China Coal Society, 2021, 46(9): 2910-2922.

  • 期刊类型引用(1)

    1. 柳昭星. 奥陶系灰岩顶部劈裂注浆裂隙起裂机制试验研究. 采矿与安全工程学报. 2023(01): 204-214 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  23
  • HTML全文浏览量:  2
  • PDF下载量:  21
  • 被引次数: 3
出版历程
  • 发布日期:  2023-04-19

目录

    /

    返回文章
    返回