• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

深埋缓倾斜双煤层开采导水断裂带发育规律研究

侯恩科, 刘博, 龙天文, 徐维, 魏启明, 马进勇

侯恩科, 刘博, 龙天文, 徐维, 魏启明, 马进勇. 深埋缓倾斜双煤层开采导水断裂带发育规律研究[J]. 煤矿安全, 2022, 53(3): 50-57.
引用本文: 侯恩科, 刘博, 龙天文, 徐维, 魏启明, 马进勇. 深埋缓倾斜双煤层开采导水断裂带发育规律研究[J]. 煤矿安全, 2022, 53(3): 50-57.
HOU Enke, LIU Bo, LONG Tianwen, XU Wei, WEI Qiming, MA Jinyong. Study on development law of water-conducting fault zone in deep gently inclined double coal seam mining[J]. Safety in Coal Mines, 2022, 53(3): 50-57.
Citation: HOU Enke, LIU Bo, LONG Tianwen, XU Wei, WEI Qiming, MA Jinyong. Study on development law of water-conducting fault zone in deep gently inclined double coal seam mining[J]. Safety in Coal Mines, 2022, 53(3): 50-57.

深埋缓倾斜双煤层开采导水断裂带发育规律研究

Study on development law of water-conducting fault zone in deep gently inclined double coal seam mining

  • 摘要: 为研究深埋缓倾斜多煤层开采导水断裂带发育特征,以石槽村煤矿2-1煤和2-2煤叠置开采区为研究对象,通过井下仰孔注水试验与数值模拟方法,对覆岩破坏及导水断裂带发育特征进行了研究。结果表明:在相同地质及开采条件下,采厚1.8 m的上覆2-1煤和采厚3.4 m的下覆2-2煤开采导水断裂带发育过程均可分为缓增阶段、突增阶段和稳定阶段,但2-2煤导水断裂带发育速度大于2-1煤导水断裂带发育速度;2-1煤和2-2煤层间距为11 m条件下,2-2煤开采产生的复合导水断裂带高度大于2-1煤开采导水断裂带高度;综合分析后确定石槽村煤矿多煤层重复采空区导水断裂带发育高度为49.6 m。
    Abstract: In order to study the development characteristics of water-conducting fracture zone in deep-buried gently inclined multi-coal seam mining, taking the overlapping mining area of 2-1 coal and 2-2 coal in Shicaocun Coal Mine as the research object, through the underground uphole water injection test and numerical simulation method, the overlying rock failure and the development characteristics of water-conducting fracture zone are studied. The results show that under the same geological and mining conditions, the development process of water-conducting fracture zone of overlying 2-1 coal with 1.8 m mining thickness and 2-2 coal mining thickness of 3.4 m can be divided into occurrence and slow increase stage, sudden increase stage and stable stage. However, the development rate of 2-2 coal water-conducting fracture zone is higher than that of 2-1 coal water-conducting fracture zone. Under the condition that the distance between 2-1 coal and 2-2 coal seam is 11 m, the height of compound water-conducting fracture zone produced by 2-2 coal mining is greater than that of 2-1 coal mining. After comprehensive analysis, it is determined that the development height of water diversion fracture zone in repeated goaf of multiple coal seams in Shicaocun Coal Mine is 49.6 m.
  • [1] 高振宇,闫江平,庞长庆.多煤层重复采动覆岩“两带”高度探测技术研究[J].能源科技,2020,18(7):33-38.

    GAO Zhengyu, YAN Jiangping, PANG Changqin. Technological research on height observation of “two zones” in overlying rocks due to repeated mining of multiple coal seams[J]. Energy Science and Technology, 2020, 18(7): 33-38.

    [2] 李蕊瑞,陈陆望,欧庆华,等.考虑覆岩原生裂隙的导水裂隙带模拟[J].煤田地质与勘探,2020,48(6):179-185.

    LI Xinrui, CHENG Luwang, OU Qinghua, et al. Numerical simulation of fractured water-conducting zone by considering native fractures in overlying rocks[J]. Coal Geology & Exploration, 2020, 48(6): 179-185.

    [3] 秦伟,李文平.鄂尔多斯盆地深部煤层开采导水断裂带发育特征[J].煤矿安全,2021,52(6):217-222.

    QIN Wei, LI Wenping. Development characteristics of water conduction fracture zone in deep coal seam mining in Ordos Basin[J]. Safety in Coal Mines, 2021, 52(6): 217-222.

    [4] 车晓阳,侯恩科,谢晓深,等.煤层开采导水裂隙带发育高度分析[J].中国科技论文,2016,11(3):270-273.

    CHE Xiaoyang, HOU Enke, XIE Xiaoshen, et al. Analysis on development height of water flowing fractured zone in coal seam mining[J]. China Science Paper, 2016, 11(3): 270-273.

    [5] 龙天文.彬长矿区东北部矿井导水裂隙带发育高度及涌水量预测研究[D].西安:西安科技大学,2019.
    [6] 娄高中,谭毅.基于PSO-BP神经网络的导水裂隙带高度预测[J].煤田地质与勘探,2021,49(4):198-204.

    LOU Gaozhong, TAN Yi. Prediction of the height of water flowing fractured zone based on PSO-BP neural network[J]. Coal Geology & Exploration, 2021, 49 (4): 198-204.

    [7] 薛建坤,王皓,赵春虎,等.鄂尔多斯盆地侏罗系煤田导水裂隙带高度预测及顶板充水模式[J].采矿与安全工程学报,2020,37(6):1222-1230.

    XUE Jiankun, WANG Hao, ZHAO Chunhu, et al. Prediction of the height of water-conducting fracture zone and water-filling model of roof aquifer in Jurassic Coalfield in Ordos Basin[J]. Journal of Mining & Safety Engineering, 2020, 37(6): 1222-1230.

    [8] 侯恩科,范继超,谢晓深,等.基于微震监测的深埋煤层顶板导水裂隙带发育特征[J].煤田地质与勘探,2020,48(5):89-96.

    HOU Enke, FAN Jichao, XIE Xiaoshen, et al. Development characteristics of water-conducting fractured zone in deep coal seam based on microseismic monitoring[J]. Coal geology & exploration, 2020, 48(5): 89-96.

    [9] 杨玉亮,徐祝贺.洛河组砂岩含水层下大采高工作面导水断裂带演化规律[J].煤矿安全,2021,52(3):30-35.

    YANG Yuliang, XU Zhuhe. Evolution law of water-conducting fault zone in large mining height working face under sandstone aquifer of Luohe Formation[J]. Safety in Coal Mines, 2021, 52(3): 30-35.

    [10] 余学义,穆驰.孟巴矿强含水体下分层开采覆岩导水裂隙带发育规律[J/OL].煤炭学报:1-11[2022-03-07].http://kns.cnki.net/kcms/detail/11.2190.td.20210818.1505.005.html.

    YU Xueyi, MU Chi. Development law of water-conducting fracture zone in overlying rock under layered mining under strong water-bearing body in Barapukuria coal mine[J/OL]. Journal of China Coal Society: 1-11[2022-03-07]. http://kns.cnki.net/kcms/detail/11.2190.td.20210818.1505.005.html.

    [11] 刘英锋,王世东,王晓蕾.深埋特厚煤层综放开采覆岩导水裂缝带发育特征[J].煤炭学报,2014,39(10):1970-1976.

    LIU Yingfeng, WANG Shidong, WANG Xiaolei. Development characteristics of water flowing fractured zone of overburden deep buried extra thick coal seam and fully-mechanized caving mining[J]. Journal of China Coal Society, 2014, 39 (10): 1970-1976.

    [12] 李超峰.黄陇煤田综放采煤导水裂隙带高度经验公式[J].煤炭技术,2021,40(6):119-122.

    LI Chaofeng. Formula for predicting height of water flowing fractured zone caused during fully-mechanized caving mining in Huanglong Coalfield[J]. Coal Technology, 2021, 40(6): 119-122.

    [13] 侯恩科,谢晓深,王双明,等.中深埋厚煤层开采地下水位动态变化规律及形成机制研究-以某矿为例[J/OL].煤炭学报:1-16[2022-03-07].http://kns.cnki/net/kcms/detail/11.2190.TD.20210427.1622.004.html.

    HOU Enke, XIE Xiaoshen, WANG Shuangming, et al. Study on the dynamic law and mechanism of groundwater induced by medium-deep coal mining: A case study from one coal mine[J/OL]. Journal of China Coal Society: 1-16[2022-03-07]. http://kns.cnki.net/kcms/detail/11.2190.TD.20210427.1622.004.html.

    [14] 施龙青,吴洪斌,李永雷,等.导水裂隙带发育高度预测的PCA-GA-Elman优化模型[J].河南理工大学学报(自然科学版),2021,40(4):10-18.

    SHI Longqing, WU Hongbin, LI Yonglei, et al. Optimization model of PCA-GA-Elman for development height prediction of water-conducting fissure zone[J]. Journal of Henan Polytechnic University (Natural Science), 2021, 40(4):10-18.

    [15] 田成林,宁建国,谭云亮,等.多次采动条件下浅埋覆岩裂隙带发育规律[J].煤矿安全,2014,45(11):45.

    TIAN Chenlin, NING Jianguo, TAN Yunliang, et al. Shallow overburden rock fracture zone development law under many mining conditions[J]. Safety in Coal Mines, 2014, 45(11): 45-47.

    [16] 潘瑞凯,曹树刚,李勇,等.浅埋近距离双厚煤层开采覆岩裂隙发育规律[J].煤炭学报,2018,43(8):2261.

    PAN Kairui, CAO Shugang, LI Yong, et al. Development of overburden fractures for shallow double thick seams mining[J]. Journal of China Coal Society, 2018, 43(8): 2261-2268.

    [17] 孙学阳,卢明皎,李成,等.榆神矿区双煤层开采错距方案优化数值模拟[J].煤矿安全,2021,52(2):182.

    SUN Xueyang, LU Mingjiao, LI Cheng, et al. Optimization numerical simulation of staggered distance scheme for double coal seam mining in Yushen Mining Area[J]. Safety in Coal Mines, 2021, 52(2): 182-187.

    [18] 黄庆享,杜君武,侯恩科,等.浅埋煤层群覆岩与地表裂隙发育规律和形成机理研究[J].采矿与安全工程学报,2019,36(1):7-15.

    HUANG Qinxiang, DU Junwu, HOU Enke, et al. Research on overburden and ground surface cracks distribution and formation mechanism in shallow coal seams group mining[J]. Journal of Mining & Safety Engineering, 2019, 36(1):7-15.

    [19] 姚琦,冯涛,廖泽.急倾斜煤层走向综采覆岩破坏特性研究[J].湖南科技大学学报(自然科学版),2019,34(4):8-16.

    YAO Qi, FENG Tao, LIAO Ze. Study on characteristics of rock-strata fracture of fully mechanized mining in steep inclined coal seam[J]. Journal of Hunan University of Science & Technology( Natural Science Edition), 2019, 34(4): 8-16.

    [20] 刘叶青,冷丹,赵海陆,等.东北白垩纪煤田倾斜煤层顶板导水裂隙带发育高度研究[J].中国煤炭地质,2017,29(12):59-62.

    LIU Yeqing, LENG Dan, ZHAO Hailu, et al. Study on cretaceous coalfield inclined coal seam roof water conducted zone developed height in northeast china[J]. Coal Geology of China, 2017, 29(12): 59-62.

    [21] 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[S].
    [22] 王涛,韩煊,赵先宇.FLAC3D数值模拟方法及工程应用-深入剖析FLAC3D5.0[M].北京:中国建筑工业出版社,2015:428-443.
    [23] 徐维,刘德旺,尹尚先,等.东曲矿28806工作面导水裂隙带发育规律研究[J].煤炭技术,2019,38(9):118-121.

    XU Wei, LIU Dewang, YIN Shangxian, et al. Study on development law of water-conductive fracture zone in 28806 working face of Dongqu Mine[J]. Coal Technology, 2019, 38(9): 118-121.

  • 期刊类型引用(2)

    1. 赵兵朝,冯杰,赵阳,侯恩科,马云祥,冯欣怡. 覆岩导水裂隙带发育高度动态演化规律研究. 煤矿安全. 2024(02): 176-183 . 本站查看
    2. 王浩杰,方家虎,孙萍. 钱营孜矿F_(22)高角度正断层防水煤柱留设宽度研究. 煤矿安全. 2023(01): 188-197 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  58
  • HTML全文浏览量:  13
  • PDF下载量:  154
  • 被引次数: 5
出版历程
  • 发布日期:  2022-03-19

目录

    /

    返回文章
    返回