基于层次分析法的井壁厚度优选

    Optimization of Thickness for Shaft Wall Based on Analytic Hierarchy Process

    • 摘要: 以某立井井壁设计为工程背景,首先利用理论计算公式确定井壁厚度选择区间,再利用层次分析法将此问题分解为不同的层次结构,然后用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,得出具体影响因素的权重,再将调研的评分与权重相乘,最终确定合理的立井井壁厚度。在保证立井安全的前提下,充分考虑立井设计的经济性。结果表明:相对于传统的立井井壁厚度设计方案,结合层次分析法将专家评价用数学知识进行优化,得出更贴近实际的权重;再将权重与调研评分相乘,得出更加科学和可靠的决策方案。

       

      Abstract: Taking the shaft wall design of a vertical shaft as engineering background. We used theoretical calculation formula to determine the wall thickness selection range, and use analytic hierarchy process (ahp) to decompose the problem into different hierarchies, and then obtained the priority weights of each element of each level on an element of last level by solving and judging matrix eigenvector, and concluded the specific weights of affecting factors. We finally determine the reasonable vertical shaft wall thickness by multiplying researching scores with weight. On the premise of ensuring the safety of shaft, we fully consider the economy of vertical design. The results show that using analytic hierarchy process (ahp) to optimize expert evaluation by mathematical knowledge can draw the weights closer to the practice compared with the traditional design of vertical shaft wall thickness. By multiplying researching scores with weights, we can get more scientific and reliable decision scheme.

       

    /

    返回文章
    返回