[1] 王甜甜,张雁,赵伟,等.伊敏矿区地下水水化学特征及其形成作用分析[J].环境化学,2021,40(5):1480-1489.
WANG Tiantian, ZHANG Yan, ZHAO Wei, et al. Hydrogeochemical characteristics and formation process of groundwater in Yimin mining area[J]. Environmental Chemistry, 2021, 40(5): 1480-1489.
[2] 谢和平,任世华,谢亚辰,等.碳中和目标下煤炭行业发展机遇[J].煤炭学报,2021,46(7):2197-2211.
XIE Heping, REN Shihua, XIE Yachen, et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society, 2021, 46(7): 2197-2211.
[3] WU Qiang, MU Wenping, XING Yuan, et al. Source discrimination of mine water inrush using multiple methods: a case study from the Beiyangzhuang Mine, Northern China[J]. Bull Eng Geol Environ, 2019, 78: 469-482.
[4] 白海波,缪协兴.晚古生代煤田水文地质特征与防治水理论及技术[J].中国矿业大学学报,2016,45(1):1-10.
BAI Haibo, MIAO Xiexing. Hydrogeological characteristics and mine water inrush prevention of late paleozoic coalfields[J]. Journal of China University of Mining & Technology, 2016, 45(1): 1-10.
[5] 靳德武.我国煤矿水害防治技术新进展及其方法论思考[J].煤炭科学技术,2017,45(5):141-147.
JIN Dewu. New development of water disaster prevention and control technology in China coal mine and consideration on methodology[J]. Coal Science and Technology, 2017, 45(5): 141-147.
[6] GUAN Zilong, JIA Zhifeng, ZHAO Zhiqiang, et al. Identification of inrush water recharge sources using hydrochemistry and stable isotopes: A case study of Mindong No.1 coal mine in north-east Inner Mongolia, China[J]. Journal of Earth System Science, 2019, 128: 200.
[7] DONG Shuning, WANG Hao, GUO Xiaoming, et al. Characteristics of Water Hazards in China’s Coal Mines: A Review[J]. Mine Water and the Environment, 2021, 40: 325-333.
[8] 刘凯旋,刘启蒙,柴辉婵,等.孙疃矿区地下水化学特征及其控制因素研究[J].煤炭工程,2019,51(4):74 -79.
LIU Kaixuan, LIU Qimeng, CHAI Huichan, et al. Chemical characteristics and control factors of groundwater in Suntuan coal mine[J]. Coal Engineering, 2019, 51(4): 74-79.
[9] 张成行,郑洁铭,徐智敏,等.基于水化学特征的顺和煤矿太灰水动力条件分析[J].煤炭工程,2020,52(6):126-129.
ZHANG Chenghang, ZHENG Jieming, XU Zhimin, et al. Hydrodynamic conditions analysis of Taiyuan formation limestone aquifer in Shunhe Coal Mine based on hydrochemical characteristics[J]. Coal Engineering, 2020, 52(6): 126-129.
[10] 许蓬,王明.环境同位素技术在判定矿井含水层间水力联系的应用[J].煤炭科学技术,2018,46(S1):227-230.
XU Peng, WANG Ming. Application of environmental isotopes technology in determining hydraulic connection between mine aquifer[J]. Coal Science and Technology, 2018, 46(S1): 227-230.
[11] 胡峯,王来斌.桃园煤矿Ⅱ1042工作面主要含水层的水力联系分析[J].河南科技,2020,714(16):69-72.
HU Feng, WANG Laibin. Taoyuan Coal Mine Ⅱ1042 face the main aquifer hydraulic connection analysis[J]. Henan Science and Technology, 2020, 714(16): 69-72.
[12] 张乐中,曹海东.利用水化学特征识别桑树坪煤矿突水水源[J].煤田地质与勘探,2013,41(4):42-44.
ZHANG Lezhong, CAO Haidong. Distinguishing the sources of water inrush in sangshuping coal mine by hydrochemical characteristics[J]. Coal Geology & Exploration, 2013, 41(4): 42-44.
[13] 张淑莹,胡友彪,琚棋定.基于水化学特征分析判别朱集矿矿井突水水源[J].矿业安全与环保,2018,45(6):53-56.
ZHANG Shuying, HU Youbiao, JU Qiding. Distinguishing the sources of water inrush in Zhuji Coal Mine by hydrochemical characteristics[J]. Mining safety & Environmental Protection, 2018, 45(6): 53-56.
[14] 杨建,刘基,靳德武,等.有机-无机联合矿井突水水源判别方法[J].煤炭学报,2018,43(10):2886-2894.
YANG Jian, LIU Ji, JIN Dewu, et al. Method of determining mine water inrush source based on combination of organic-inorganic water chemistry[J]. Journal of China Coal Society, 2018, 43(10): 2886-2894.
[15] LIN Yun, REN Huaxin, WU Yazun, et al. The evolution of hydrogeochemical characteristics of a typical piedmont karst groundwater system in a coal-mining area, Northern China[J]. Environmental Earth Sciences, 2019, 78: 557.
[16] WU Qiang, GUO Xiaoming, SHEN Jianjun, et al. Risk Assessment of Water Inrush from Aquifers Underlying the Gushuyuan Coal Mine, China[J]. Mine Water Environment, 2017, 36: 96-103.
[17] 薛建坤.基于同位素方法的矿井突水水源定量分析研究[J].煤炭工程,2019,51(12):150-153.
XUE Jiankun. Quantitative analysis of mine water inrush using isotope method[J]. Coal Engineering, 2019, 51(12): 150-153.
[18] 孙亚军,张莉,徐智敏,等.煤矿区矿井水水质形成与演化的多场作用机制及研究进展[J].煤炭学报,2022,47(1):423-437.
SUN Yajun, ZHANG Li, XU Zhimin, et al. Multi-field action mechanism and research progress of coal mine water quality formation and evolution[J]. Journal of China Coal Society, 2022, 47(1): 423-437.
[19] 孙鹏飞,易齐涛,许光泉.两淮采煤沉陷积水区水体水化学特征及影响因素[J].煤炭学报,2014,39(7):1345-1353.
SUN Pengfei, YI Qitao, XU Guangquan. Characteristics of water chemistry and their influencing factors in subsidence waters in the Huainan and Huaibei mining areas, Anhui province[J]. Journal of China Coal Society, 2014, 39(7): 1345-1353.
[20] 朱乐章.利用水化学特征识别朱庄煤矿突水水源[J].中国煤炭,2018,44(5):100-104.
ZHU Yuezhang. Identification of water inrush Source of Zhuzhuang Coal Mine based on hydrochemical characteristics[J]. China Coal, 2018, 44(5): 100-104.
[21] 武亚遵,潘春芳,林云,等.典型华北型煤矿区主要充水含水层水文地球化学特征及控制因素[J].地质科技情报,2018,37(5):191-199.
WU Yazun, PAN Chunfang, LIN Yun, et al. Hydrogeochemical characteristics and controlling factors of main water filled aquifers in the typical north China coalfield[J]. Geological Science and Technology Information, 2018, 37(5): 191-199.
[22] 蔚波,王皓,刘峰,等.孟加拉国巴拉普库利亚煤矿含水层水力联系研究[J].煤田地质与勘探,2021,49(4):205-212.
YU Bo, WANG Hao, LIU Feng, et al. Hydraulic connection of aquifers in Barapukuria Coal Mine, Bang-ladesh[J]. Coal Geology & Exploration, 2021, 49(4): 205-212.
[23] 武程亮,滕子军,张瑞廷,等.山东霄云煤矿陷落柱突水治理实践[J].钻探工程,2021,48(3):161-169.
WU Chengliang, TENG Zijun, ZHANG Ruiting, et al. Treatment of water gushing from the collapse column in Xiaoyun Coal Mine of Shandong province[J]. Drilling Engineering, 2021, 48(3): 161-169.
[24] 张乐中.煤矿深部开采底板突水机理研究-以王峰井田为例[D].西安:长安大学,2013.
[25] 向晓蕊.兴隆庄矿井水化学特征演化及识别模式研究[D].三河:华北科技学院,2016.
[26] 张维翔.淮南高潜水位采煤沉陷区水质特征及变化趋势[D].合肥:安徽大学,2019.
[27] 邢世平,胡友彪,吴亚萍,等.丰予井田地下水化学特征分析及意义[J].煤田地质与勘探,2017,45(4):85-93.
XING Shiping, HU Youbiao, WU Yaping, et al. Chemical characteristics of groundwater in Fengyu mine and their significance[J]. Coal Geology & Exploration, 2017, 45(4): 85-93.
[28] 汪子涛,刘启蒙,刘瑜.淮南煤田地下水水化学空间分布及其形成作用[J].煤田地质与勘探,2019,47(5):40-47.
WANG Zitao, LIU Qimeng, LIU Yu. Spatial distribution and formation of groundwater hydrochemistry in Huainan coalfield[J]. Coal Geology & Exploration, 2019, 47(5): 40-47.
[29] 刘基.呼吉尔特矿区深埋含水层水文地球化学特征及其指示意义[J].干旱区资源与环境,2021,35(1):154-159.
LIU Ji. Hydrogeochemical characteristics of deep buried aquifer in Hujierte mining area and its implications[J]. Journal of Arid Land Resources and Environment, 2021, 35(1): 154-159.
[30] 刘基,高敏,靳德武,等.榆神矿区地表水水化学特征及其影响因素分析[J].煤炭科学技术,2020,48(7):354-361.
LIU Ji, GAO Min, JIN Dewu, et al. Hydrochemical characteristics of surface water and analysis on influence factors in Yushen Mining Area[J]. Coal Science and Technology, 2020, 48(7): 354-361.
[31] MARGHADE D, MALPE DB, ZADE AB. Major ion chemistry of shallow groundwater of a fast growing city of Central India[J]. Environ Monit Assess, 2012, 184: 2405-2418.
[32] 关磊声.大同口泉沟-云冈沟矿区煤矿采空区水水质评价[D].淮南:安徽理工大学,2019.
[33] 易雅宁,孙晓懿,王富强,等.三门峡库区湿地水化学特征及影响因素分析[J].人民黄河,2021,43(3):90-96.
YI Yaning, SUN Xiaoyi, WANG Fuqiang, et al. Water chemistry characteristics and main influencing factorsof the wetland in sanmenxia reservoir area[J]. Yellow River, 2021, 43(3): 90-96.
[34] LI Peiyue, TIAN Rui, LIU Rong. Solute Geochemistry and Multivariate Analysis of Water Quality in the Guohua Phosphorite Mine, Guizhou Province, China[J]. Exposure and Health, 2019, 11: 81-94.
[35] LIU Wei, LIU Shenghua, TANG Changgen, et al. Evaluation of surface water quality after mine closure in the coal mining region of Guizhou, China[J]. Environmental Earth Sciences, 2020, 79(18): 427-441.
[36] WU Jianhua, LI Peiyue, QIAN Hui, et al. Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: a case study in Laoheba phosphorite mine in Sichuan, China[J]. Arabian Journal of Geosciences, 2014, 7: 3973-3982.
|