• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
DU Minghao, NING Jianguo, WANG Jun, SHI Xinshuai, LIU Guojian, YANG Fuqiang. Research on time-varying evolution law of overburden stress field and fracture field in shallow coal seam mining[J]. Safety in Coal Mines, 2023, 54(4): 148-155.
Citation: DU Minghao, NING Jianguo, WANG Jun, SHI Xinshuai, LIU Guojian, YANG Fuqiang. Research on time-varying evolution law of overburden stress field and fracture field in shallow coal seam mining[J]. Safety in Coal Mines, 2023, 54(4): 148-155.

Research on time-varying evolution law of overburden stress field and fracture field in shallow coal seam mining

More Information
  • Published Date: April 19, 2023
  • The mining stress formed in the surrounding rock after coal seam mining is the root cause of the damage and fracture of the stope surrounding rock. In order to study the evolution characteristics of mining stress and the fracture process of overlying strata on the mining face, a numerical model was established to simulate the evolution law of stress field and fracture field in the mining process of the working face by taking the 40101 mining face of Gaoliang Coal Mine as an example. The results show that the relationship between rock collapse and failure can be judged by using Mohr-Coulomb criterion to analyze the variation law of the difference between maximum and minimum principal stresses. The correctness of the time-varying evolution of fracture field and stress field in working face mining can be verified by comparing the numerical simulation results with the field measured results.
  • [1]
    宋振骐.实用矿山压力与岩层控制[M].徐州:中国矿业大学出版社,1998.
    [2]
    钱鸣高,石平五,许家林.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010.
    [3]
    钱鸣高.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010.
    [4]
    吴顺利,李利平,张晓平.岩石力学[M].北京:高等教育出版社,2021.
    [5]
    庞义辉,王国法,李冰冰.深部采场覆岩应力路径效应与失稳过程分析[J].岩石力学与工程学报,2020,39(4):682-694.

    PANG Yihui, WANG Guofa, LI Bingbing. Stress path effect and instability process analysis of overlying strata in deep stopes[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 682-694.
    [6]
    许鸣皋.近距离煤层群上行开采覆岩运移与应力—裂隙演化特征研究[D].淮南:安徽理工大学,2015.
    [7]
    郭文兵,娄高中.覆岩破坏充分采动程度定义及判别方法[J].煤炭学报,2019,44(3):755-766.

    GUO Wenbing, LOU Gaozhong. Definition and distinguishing method of critical mining degree of overburden failure[J]. Journal of China Coal Society, 2019, 44(3): 755-766.
    [8]
    陈连军,李天斌,王刚,等.水下采煤覆岩裂隙扩展判断方法及其应用[J].煤炭学报,2014,39(S2):301-307.

    CHEN Lianjun, LI Tianbin, WANG Gang, et al. Study on crack expansion judgment method in overlying strata and its application for coal mining under aquifers[J]. Journal of China Coal Society, 2014, 39(S2): 301-307.
    [9]
    张志巍,张玉军,张风达.采动与隐伏断层双重作用下底板破坏特征[J].煤矿安全,2021,52(1):194-199.

    ZHANG Zhiwei, ZHANG Yujun, ZHANG Fengda. Characteristics of floor failure under the double action of mining and hidden faults[J]. Safety in Coal Mines, 2021, 52(1): 194-199.
    [10]
    许满贵,魏攀,李树刚,等.“三软”煤层综采工作面覆岩运移和裂隙演化规律实验研究[J].煤炭学报,2017,42(S1):122-127.

    XU Mangui, WEI Pan, LI Shugang, et al. Experimental study on overburden migration and fracture evolution law of “three soft” coal seam fully mechanized working-face[J]. Journal of China Coal Society, 2017, 42(S1): 122-127.
    [11]
    胡岚清.采动区卸压瓦斯覆岩裂隙优势通道演化规律[D].太原:太原理工大学,2021.
    [12]
    杨达明,郭文兵,赵高博,等.厚松散层软弱覆岩下综放开采导水裂隙带发育高度[J].煤炭学报,2019,44(11):3308-3316.

    YANG Daming, GUO Wenbing, ZHAO Gaobo, et al. Height of water-conducting zone in longwall top-coal caving mining under thick alluvium and soft overburden[J]. Journal of China Coal Society, 2019, 44(11): 3308-3316.
    [13]
    刘佳维.充填开采围岩-充填体组合体系应力-位移演化及稳定性研究[D].徐州:中国矿业大学,2020.
    [14]
    张村,任赵鹏,韩鹏华,等.西部矿区厚基岩特大采高工作面导水裂隙带发育特征[J].矿业科学学报, 2022,7(3):333-343.

    ZHANG Cun, REN Zhaopeng, HAN Penghua, et al. Characteristic of the water-conducting fracture zone in thick overburden working face with extra-large mining height in western mining area[J]. Journal of Mining Science and Technology, 2022,7(3): 333-343.
    [15]
    汤国水.老虎台矿上覆岩层结构特征对开采影响研究[D].阜新:辽宁工程技术大学,2015.
    [16]
    张万斌.浅埋薄基岩煤层开采覆岩运动破坏规律数值分析[D].淮南:安徽理工大学,2014.
    [17]
    徐刚,王云龙,张天军,等.厚煤层采动覆岩裂隙分布特征及卸压瓦斯抽采技术[J].煤矿安全,2020,51(2):150-155.

    XU Gang, WANG Yunlong, ZHANG Tianjun, et al. Fracture distribution characteristics of mining-induced overburden in thick coal seam and pressure relief gas extraction technology[J]. Safety in Coal Mines, 2020, 51(2): 150-155.
    [18]
    杜君武,董振波.雅店煤矿4号煤层开采导水裂隙带高度研究[J].矿业安全与环保,2018,45(5):78-82.

    DU Junwu, DONG Zhenbo. Research on the height of water flowing fractured zone in No.4 coal seam of Yadian coal mine[J]. Mining Safety and Environmental Protection, 2018, 45(5): 78-82.
    [19]
    李振峰,靳晓敏.应用UDEC进行顶板“三带”范围划分的数值模拟研究[J].矿业安全与环保,2015,42(4):21-24.

    LI Zhenfeng, JIN Xiaomin. Numerical simulation research on scope division of “three zones” in roof with UDEC[J]. Mining Safety and Environmental Protection, 2015, 42(4): 21-24.
    [20]
    刘宁,张春生,褚卫江.深埋隧洞开挖损伤区的检测及特征分析[J].岩土力学,2011,32(S2):526-531.

    LIU Ning, ZHANG Chunsheng, CHU Weijiang. Detection and analysis of excavation damage zone of deep tunnel[J]. Rock and Soil Mechanics, 2011, 32(S2): 526-531.
    [21]
    刘宁,张春生,单治钢,等.深埋硬岩隧洞开挖响应合理解译与监测优化[J].岩石力学与工程学报,2020, 39(S1):2818-2827.

    LIU Ning, ZHANG Chunsheng, SHAN Zhigang, et al. Reasonable interpretation and monitoring optimization on excavation response of deep buried tunnel in hard rock[J]. Rock and Soil Mechanics, 2020, 39(S1): 2818-2827.
    [22]
    程关文,王悦,马天辉,等.煤矿顶板岩体微震分布规律研究及其在顶板分带中的应用——以董家河煤矿微震监测为例[J].岩石力学与工程学报,2017,36(S2):4036-4046.

    CHENG Guanwen, WANG Yue, MA Tianhui, et al. Research on the partitioning method of the overburden in coal mine based on microseismic monitoring[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 4036-4046.
    [23]
    孟祥军,林海飞,王超,等.巨厚煤层综放工作面覆岩“三带”演化特征[J].煤矿安全,2021,52(6):85-90.

    MENG Xiangjun, LIN Haifei, WANG Chao, et al. Evolution characteristics of overburden three zones in fully-mechanized caving face in huge thick coal seam[J]. Safety in Coal Mines, 2021, 52(6): 85-90.
    [24]
    任建喜,陈首佳,岳东,等.玉华矿4-2煤裂隙煤岩三轴压缩破坏机理研究[J].煤矿安全,2021,52(9):54-63.

    REN Jianxi, CHEN Shoujia, YUE Dong, et al. Study on triaxial compression failure mechanism of fractured coal and rock in 4-2 coal seam of Yuhua Mine[J].Safety in Coal Mines, 2021, 52(9): 54-63.
    [25]
    郝宪杰,刘继山,魏英楠,等.2 000 m超深煤系储层力学及声发射特征的围压效应[J].中南大学学报(自然科学版),2021,52(8):2611-2621.

    HAO Xianjie, LIU Jishan, WEI Yingnan, et al. Effects of confining pressure on mechanical responses and acoustic characteristic of coal gas seams deeper than 2 000 m[J]. Journal of Central South University(Science and Technology), 2021, 52(8): 2611-2621.
  • Related Articles

    [1]WANG Xueming. A Mine High-precision Turbidity Sensor[J]. Safety in Coal Mines, 2020, 51(8): 124-127.
    [2]SONG Yidong. Design of Remote Online Upgrade Function of Mine Sensor Based on CAN Bus[J]. Safety in Coal Mines, 2020, 51(8): 120-123.
    [3]LIU Yu, KANG Aiguo, LI Lianghui, WU Xiao. Broken Wire Defect Detection System in Mine Wire Rope Based on TMR Sensor[J]. Safety in Coal Mines, 2019, 50(5): 122-125.
    [4]HUANG Yousheng. Online Upgrading Technology for Mine-used Sensor Based on ISP Technology[J]. Safety in Coal Mines, 2019, 50(1): 140-143.
    [5]ZHAO Yue. Software Upgrading Technology for Coal Mine Monitoring Substation Based on Ethernet[J]. Safety in Coal Mines, 2018, 49(3): 95-97.
    [6]ZENG Wei. Application of Color LCD Display in Designing Mine Sensor[J]. Safety in Coal Mines, 2018, 49(1): 118-121.
    [7]LIANG Bo, LIU Chunfu, FENG Wenbin. Suppression Method of Electromagnetic Interference for Switching Power Supply of Mine Sensor[J]. Safety in Coal Mines, 2017, 48(3): 95-98.
    [8]XU Yonggang, PANG Yajie, HUANG Xin, HUA Gang. Design of Mine Sensor's Verification System[J]. Safety in Coal Mines, 2016, 47(10): 97-100.
    [9]CHANG Lin. Laser Methane Sensor for Coal Mine Based on Pressure Compensation[J]. Safety in Coal Mines, 2016, 47(6): 126-128.
    [10]LIU Jingwei, ZHANG Xiaobo, SUN Zhifei, HU Yun. Design of Constant / Closure Output Protection Circuit for Coal Mine Sensor[J]. Safety in Coal Mines, 2016, 47(1): 97-99.
  • Cited by

    Periodical cited type(5)

    1. 夏利玲,孙翠玲,张慧,黄春香. 基于CAN和REST物联网技术的智能矿山安全检测系统研发. 金属矿山. 2024(03): 215-220 .
    2. 刘梅华,黄增波,陈伟. 在线升级矿用传感器设计. 煤矿机械. 2022(03): 1-4 .
    3. 钱霄杰,殷勤,朱超群,刘茂兵. CAN总线的输送控制系统集成化研究. 单片机与嵌入式系统应用. 2021(11): 51-55 .
    4. 张鑫,张向顺,赵惟诚,郭永志. 基于DSP和CAN的机电环境设备监控系统模块化设计. 工业仪表与自动化装置. 2021(06): 21-25+87 .
    5. 郭海兵,张全柱,邓永红. 一种新型光纤CAN控制器通信系统研究. 华北科技学院学报. 2021(06): 35-42+54 .

    Other cited types(1)

Catalog

    Article views (34) PDF downloads (44) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return