• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
HUANG Fan, CUI Chuanbo, DENG Cunbao. Research on overlying strata movement and dangerous area of coal spontaneous combustion in goaf in dual-system coal seam mining[J]. Safety in Coal Mines, 2022, 53(11): 42-47,55.
Citation: HUANG Fan, CUI Chuanbo, DENG Cunbao. Research on overlying strata movement and dangerous area of coal spontaneous combustion in goaf in dual-system coal seam mining[J]. Safety in Coal Mines, 2022, 53(11): 42-47,55.

Research on overlying strata movement and dangerous area of coal spontaneous combustion in goaf in dual-system coal seam mining

More Information
  • Published Date: November 19, 2022
  • Aiming at the engineering problem of large air leakage in the goaf of 8106 fully mechanized mining face of Yongdingzhuang Mine in Datong Mining Area, numerical simulation method is used to study the movement breaking form and the dynamic evolution of cracks and the expansion range of the double-system coal seam under multiple mining. The goaf connection mechanism reveals the distribution law of the coal spontaneous combustion danger area in the goaf. The results show that the goaf of Jurassic coal seam group is manifested as roof fall, large floor heave and shear failure of the floor near the coal pillar; the mining of Carboniferous 3-5# coal seam will successively cause the breakage and caving of the basic roof, the lower key layer and the upper key layer. After the upper key layer breaks and subsides, the double-system goaf will be connected and lead to air leakage. The breakage period of the lower key layer is 60 m. In the cross section of the crack zone formed between the key layers, the main air leakage channels are divided into dynamic cracks and edge cracks; when there is external air leakage, the coal spontaneous combustion danger area in the goaf is mainly distributed between 100-175 m from the working face, and when there is no external air leakage, the relative area of the coal spontaneous combustion danger zone is greatly reduced and the overall position is moved forward about 30 m in the direction of the working face.
  • [1]
    袁亮.我国煤矿安全发展战略研究[J].中国煤炭,2021,47(6):1-6.

    YUAN Liang. Study on the development strategy of coal mine safety in China[J]. China Coal, 2021, 47(6): 1.
    [2]
    张辛亥,朱辉,安启启,等.凯达煤矿采空区煤自燃极限参数分析[J].中国安全生产科学技术,2021,17(5):86-92.

    ZHANG Xinhai, ZHU Hui, AN Qiqi, et al. Analysis on limit parameters of coal spontaneous combustion in goaf of Kaida coal mine[J]. Journal of Safety Science and Technology, 2021, 17(5): 86-92.
    [3]
    张勋.大同矿区多煤层组重叠开采矿压显现规律及控制技术[D].阜新:辽宁工程技术大学,2015.
    [4]
    刘雷政.浅埋藏近距离煤层群开采上覆采空区煤自燃危险区域判定[D].徐州:中国矿业大学,2015.
    [5]
    余明高,滕飞,褚廷湘,等.浅埋煤层重复采动覆岩裂隙及漏风通道演化模拟研究[J].河南理工大学学报(自然科学版),2018,37(1):1-7.

    YU Minggao, TENG Fei, CHU Tingxiang, et al. Simulation study on the evolution of the overlying strata fractures and air-leaking passage under repeated mining of shallow buried coal seams[J]. Journal of Henan Polytechnic University(Natural Science), 2018, 37(1): 1-7.
    [6]
    DU F, JIAO K, MA Z Y, et al. Influence of key strata on the gas downward leakage law in dual-system of coal seam[J]. Geofluids, 2020, 2020(2): 1-10.
    [7]
    黄震.新集一矿多层复合采空区煤炭自燃防治技术研究[D].淮南:安徽理工大学,2019.
    [8]
    刘文永,文虎,王宝元.近距离煤层群采空区漏风控制技术[J].煤炭技术,2017,36(9):160-162.

    LIU Wenyong, WEN Hu, WANG Baoyuan. Gob air leak control technology of coal seam group at short range[J]. Coal Technology, 2017, 36(9): 160-162.
    [9]
    ZHUO H, QIN B T, QIN Q H. The impact of surface air leakage on coal spontaneous combustion hazardous zone in gob of shallow coal seams: A case study of Bulianta Mine, China[J]. Fuel, 2021, 295: 120636.
    [10]
    钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):2-7.

    QIAN Minggao, MIAO Xiexing, XU Jianlin. Theoretical study of key stratum in ground control[J]. Journal of China Coal Society, 1996, 21(3): 2-7.
    [11]
    钱鸣高,许家林.煤炭开采与岩层运动[J].煤炭学报,2019,44(4):973-984.

    QIAN Minggao, XU Jialin. Behaviors of strata movement in coal mining[J]. Journal of China Coal Society, 2019, 44(4): 973-984.
    [12]
    陈旭江.采空区覆岩破坏变形特征研究[J].煤,2021,30(3):3-6.

    CHEN Xujiang. Study on failure and deformation characteristics of overlying strata in goaf[J]. Coal, 2021, 30(3): 3-6.
    [13]
    焦坤.双系特厚煤层开采覆岩破断与裂隙场演化规律研究[D].焦作:河南理工大学,2020.
    [14]
    钱鸣高,许家林.覆岩采动裂隙分布的“O”形圈特征研究[J].煤炭学报,1998,23(5):20-23.

    QIAN Minggao, XU Jialin. Study on the “O-shape” circle distribution characteristics of mining-induced fractures in the overlaying strata[J]. Journal of China Coal Society, 1998, 23(5): 20-23.
    [15]
    ZHANG J, AN J Y, WEN Z H, et al. Numerical investigation of coal self-heating in longwall goaf considering airflow leakage from mining induced crack[J]. Process Safety and Environmental Protection, 2020, 134: 353-370.
  • Related Articles

    [1]ZHAO Tongyu, YANG Shengqiang, WANG Xiaoning, YANG Pan. Step by Step Control of Gas Geology and Main Controlling Factor Analysis for Zhaoguan Coal Mine[J]. Safety in Coal Mines, 2020, 51(2): 174-177,182.
    [2]WANG Guohua, FENG Guangjun, LIU Gang, CHEN Chongyu. Gas Geological Characteristics and Control Factors Analysis in Donghuatuo Mine[J]. Safety in Coal Mines, 2017, 48(2): 149-152.
    [3]JIA Yongyong, LOU Fang. Study on Gas Geological Laws of Aai Mine Area[J]. Safety in Coal Mines, 2016, 47(7): 14-17.
    [4]HU Luyu, ZHU Yanming, ZHANG Junjian. Analysis of Gas Geological Control Factors for Lyujiatuo Mine[J]. Safety in Coal Mines, 2016, 47(6): 182-185.
    [5]FENG Guangjun, ZHU Yanming, ZHOU Ze, QIU Lei. Analysis of Gas Geological Characteristics and Factors in Southeastern Wing of Kaiping Syncline[J]. Safety in Coal Mines, 2016, 47(3): 144-147,151.
    [6]WANG Luming, CUI Hongqing, ZHONG Fuping, DONG Linsheng. Gas Occurrence Law and Division of Gas Geological Unit in 11-2 Coal Seam of Dingji Mine[J]. Safety in Coal Mines, 2015, 46(11): 156-159.
    [7]CHEN Chuang, CUI Hongqing. Control Characteristics of Two Major Geological Factors on Gas Occurrence of Qi'nan Coal Mine[J]. Safety in Coal Mines, 2015, 46(11): 27-30,34.
    [8]HENG Xianwei, LI Qingsong, HAN Zhenli. Structural Control Features of Coal and Gas Outburst in Shuicheng Mining Area[J]. Safety in Coal Mines, 2015, 46(7): 186-188.
    [9]HOU Haihai. Geological Features of Panyi Coal Mine Based on Gas Occurrence Geological Tectonic Gradual Control Theory[J]. Safety in Coal Mines, 2014, 45(3): 150-152.
    [10]CAI Tu, ZHU Yan-ming, LI Wu, CHEN Jie. Analysis of Gas Occurrence Features and Geological Factors in Eastern Taihang Mountain[J]. Safety in Coal Mines, 2012, 43(7): 152-154.
  • Cited by

    Periodical cited type(14)

    1. 李静. 矿井人员定位系统定位精度的优化设计与应用. 自动化应用. 2024(06): 28-30 .
    2. 庞秋奔,杨梅. 基于核密度估计模型优化手术调度的设计与应用. 中国医疗设备. 2024(04): 83-87+108 .
    3. 周开平. 煤矿悬臂式掘进机可靠性技术研究设计. 煤炭技术. 2024(06): 246-249 .
    4. 陈代伟,胡峰平,钱正峰,唐银. 基于3D人脸识别的煤矿人员出入井唯一性识别装置设计. 煤炭科技. 2024(04): 116-120 .
    5. 任保将. 矿井工作面UWB联动闭锁技术及应用设计. 煤矿安全. 2024(09): 225-230 . 本站查看
    6. 聂晓艳,郭丽芳. 端边云一体的煤矿监测预警与应急联动模型研究. 煤炭技术. 2023(01): 261-264 .
    7. 胡一凡,李兆峰,李少辉,高焕芝,王小英,黄猛. 基于微服务架构的选矿工艺数字化计算系统设计与实现. 矿业研究与开发. 2023(03): 185-190 .
    8. 周开平. 矿用EBZ220型掘进机行驶控制系统设计研究. 煤炭工程. 2023(05): 183-187 .
    9. 金业勇. 一种信息矿灯设计与实现. 煤矿安全. 2023(06): 233-238 . 本站查看
    10. 李世银,张鹏,闵明慧,李志伟,张梦迪,肖家杨. 智能反射面技术及其在煤矿井下无线盲区覆盖的应用探讨. 工矿自动化. 2023(06): 112-119 .
    11. 熊超员,张优,胡玉玺. 基于数字孪生的选煤厂厂区人员视频定位方法. 洁净煤技术. 2023(S2): 795-800 .
    12. 汪爽. 基于UWB定位技术的井下人员定位系统设计研究. 矿业装备. 2023(12): 191-193 .
    13. 赵冬冬. 新维煤矿高精度井下人员定位系统设计研究. 煤炭与化工. 2022(11): 71-74 .
    14. 王伟,陈贤,金业勇. 基于蓝牙传输的便携式定位仪设计与实现. 煤矿安全. 2022(12): 121-124 . 本站查看

    Other cited types(1)

Catalog

    Article views (19) PDF downloads (14) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return