• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
WU Hu, LU Wei, LI Jinliang, QI Guansheng, ZHANG Qian. Influence analysis of liquid CO2 fire extinguishing pipeline transportation characteristics[J]. Safety in Coal Mines, 2022, 53(9): 157-161.
Citation: WU Hu, LU Wei, LI Jinliang, QI Guansheng, ZHANG Qian. Influence analysis of liquid CO2 fire extinguishing pipeline transportation characteristics[J]. Safety in Coal Mines, 2022, 53(9): 157-161.

Influence analysis of liquid CO2 fire extinguishing pipeline transportation characteristics

More Information
  • Published Date: September 19, 2022
  • Pipeline transportation of liquid CO2 can not only prevent coal mine fires, but also effectively store greenhouse gase CO2 in underground, which is in line with the current global economic development model. Due to the temperature difference of the mine environment and the inclination of the roadway, heat exchange and large pressure drop will inevitably occur in the pipeline. In order to avoid the phase change of liquid CO2 during transportation, it is necessary to consider factors such as ambient temperature, wind speed, insulation cotton, pipeline inclination, and terrain elevation to ensure safe, cost-effective transportation. Based on the commercial simulation software ASPEN HYSYS V8.4, this paper simulates the process of liquid CO2 transportation. The results show that the inclination of the pipeline has a great influence on the CO2 transportation process among environmental factors and is conducive to liquid CO2 transportation.
  • [1]
    Wang K, Zhai X, Deng J, et al. Application of liquid CO2 conveying technology for fire control in goaf[J]. International Journal of Heat and Technology, 2018, 36(2): 657-662.
    [2]
    吕英华.地面钻孔灌注液态CO2技术在采空区防灭火中的应用[J].煤矿安全,2020,51(12):179-183.

    LYU Yinghua. Application of liquid carbon dioxide injection in ground drilling for fire preventing and extinguishing in goaf[J]. Safety in Coal Mines, 2020, 51(12): 179-183.
    [3]
    杜斌.采空区两巷同注 CO2防灭火效果考察分析[J].煤矿安全,2020,51(11):185-188.

    DU Bin. Investigation and analysis on effect of CO2 injection along both sides of goaf[J]. Safety in Coal Mines, 2020, 51(11): 185-188.
    [4]
    王洪义,宋艳苹.氮气防灭火技术在平顶山矿区的应用[J].矿业安全与环保,2009,36(3):49-51.

    WANG Hongyi, SONG Yanping. Application of fire prevention and control technology with nitrogen gas in Pingdingshan coal mining area[J]. Mining Safety & Environmental Protection, 2009, 36(3): 49-51.
    [5]
    邓军,白祖锦,肖旸.煤自燃灾害防治技术现状与挑战[J].煤矿安全,2020,51(10):118-125.

    DENG Jun, BAI Zujin, XIAO Yang. Present situation and challenge of coal spontaneous combustion disasters prevention and control technology[J]. Safety in Coal Mines, 2020, 51(10): 118-125.
    [6]
    郭军,蔡国斌,金彦.煤自燃火灾防治技术研究进展及趋势[J].煤矿安全,2020,51(11):180.

    GUO Jun, CAI Guobin, JIN Yan. Research progress and trend of coal spontaneous combustion fire prevention technology[J]. Safety in Coal Mines, 2020, 51(11): 180.
    [7]
    齐更亮,路拴成.浅谈液态CO2在防治采空区煤炭自燃中的应用[J].煤矿现代化,2009(6):42-43.
    [8]
    X L Tong, Z A Huang, Y H Zhang, et al. Research and Application of Technique of Injecting Liquid CO2 in Goaf of Shigang Coal Mine to Preventing Fire[J].Progress in Mine Safety Science and Engineering II, 2014: 31.
    [9]
    屠培期.液态CO2汽化器的合理应用[J].化工管理,2014(3):159-159.
    [10]
    王刚.液态CO2灌注技术在矿井防灭火中的应用与分析[J].煤炭科学技术,2017,45(S1):89-93.

    WANG Gang. Application and analysis of liquid CO2 infusion technology in mine fire prevention and control [J]. Coal Science and Technology, 2017, 45(S1): 89.
    [11]
    赵美成.大流量气态CO2防灭火技术在采空区自燃火灾治理中的应用[J].煤矿安全,2021,52(3):122.

    ZHAO Meicheng. Application of large flow gasous CO2 fire control technology in control of spontaneous combustion fire in goaf[J]. Safety in Coal Mines, 2021, 52(3): 122.
    [12]
    Shu Y B, Li W J, Li Z X. The Technology of Liquid CO2 Used for Fire Prevention and the Related Device [J]. Advanced Materials Research, 2012, 347-353: 1642-1646.
    [13]
    姚宏章,刘贵成,董旗.液态CO2惰性灭火装置的研制与应用[J].中州煤炭,2010(3):17-18.

    YAO Hongzhang, LIU Guicheng, DONG Qi. Development and application of liquid carbon dioxide inert fire extinguishing equipment[J]. Zhongzhou Coal, 2010(3): 17-18.
    [14]
    Smejkal Q. Comparison of computer simulation of reactive distil lation using ASPEN PLUS and HYSYS software[J]. Chemical Engineering and Processing, 2012, 41(5): 413-418.
    [15]
    Suoton P, Nejat R, Iqbal M. CO2 Pipeline Design: A Review[J]. Energies, 2018, 11(9): 1-25.
    [16]
    Wei Lu, Hao Hu, Guansheng Qi. Effect of Pipe Diameter and Inlet Parameters on Liquid CO2 Flow in Transportation by Pipeline with Large Height Difference[J]. Processes, 2019, 7(10): 756.
  • Related Articles

    [1]SU Xiaowei, WANG Weijun, LI Jun, YUAN Chao, FAN Lei, MA Yujie. Risk assessment of roadway roof fall based on combined weight matter-element extension model[J]. Safety in Coal Mines, 2024, 55(10): 100-110. DOI: 10.13347/j.cnki.mkaq.20231327
    [2]YU Bo, CHEN Guangbo. Safety assessment of internal fire in coal mine based on combined weighting-matter-element extension model[J]. Safety in Coal Mines, 2023, 54(2): 61-70.
    [3]ZHAO Yongfang, ZHANG Lingyun, YU Liya. Safety Evaluation for Rock Burst Based on Entropy-weight and Matter-element Extension Model[J]. Safety in Coal Mines, 2019, 50(6): 213-218.
    [4]DU Zhenyu, XUE Junhua, REN Bo, ZHOU Wei, LI Zhibing, CHEN Benliang. Early Warning of Coal and Gas Outburst by Hierarchical Analysis and Extension Theory[J]. Safety in Coal Mines, 2018, 49(12): 169-172.
    [5]BAI Wen, XIE Xionggang, DAI Wei, XU Shiqing, GUO Pengfei. Safety Evaluation for Mine Fire Based on Entropy Weight Matter Element Extension[J]. Safety in Coal Mines, 2017, 48(7): 196-199,203.
    [6]QI Qi. Study on Weight Determination Method of Mine Emergency Management Capacity[J]. Safety in Coal Mines, 2016, 47(4): 238-240.
    [7]WANG Lu, LI Shugang, CHENG Lianhua, ZHANG Liang. Assessment Index System of Coal Mine Emergency Ability Based on PDCA Model[J]. Safety in Coal Mines, 2014, 45(8): 241-244.
    [8]LI Ji, PENG Bo, MA Wang, FAN Long, WANG Fei. The Research on Extension Evaluation Model of Roadway Roof Fall Hidden Risks[J]. Safety in Coal Mines, 2014, 45(5): 35-38.
    [9]TAN Zhanglu, ZHANG Changlu. Coal Mine Emergency Response Capability Based on Extension Superiority Evaluation Method[J]. Safety in Coal Mines, 2014, 45(4): 215-218.
    [10]DU Zhen-wei, YANG Sheng-qiang, LI Jia-nai. The Application of Extension Superiority Evaluation Method in Coal Mine Safety Evaluation[J]. Safety in Coal Mines, 2012, 43(10): 221-224.
  • Cited by

    Periodical cited type(8)

    1. 杨英兵,王青祥,宋小林,何铖茂,徐冉,唐明云,王光雄,贺兵兵,陈明浩. 神东矿区浅埋煤层开采地表裂隙分布及动态演化特征研究. 煤矿安全. 2024(06): 66-75 . 本站查看
    2. 高利军,冯斌,晋发东. 大倾角煤层协调开采地表移动变形控制. 煤矿安全. 2024(09): 157-165 . 本站查看
    3. 王现国,王晨旭,苏阳艳,张晓丽. 地下工程勘察与围岩稳定性分析评价研究综述. 人民黄河. 2023(03): 131-136 .
    4. 苏保山. 浅埋煤层地质构造带动压巷道支护技术. 山东煤炭科技. 2023(02): 3-6 .
    5. 吕晓明,王政. 特厚煤层分层开采采空区下分层大断面开切眼支护技术研究. 中国煤炭. 2022(S1): 258-265 .
    6. 王昱博,肖支飞,王安民,郑勇,仝跃. 基于CDEM方法的小间距巷道中间岩柱稳定性分析. 地下空间与工程学报. 2022(S2): 785-791 .
    7. 丁万奇,马振乾,祖自银,谢红飞,杨威,陈川. 基于分形维数的巷道围岩裂隙演化规律研究. 煤田地质与勘探. 2021(03): 167-174 .
    8. 魏建坤. 采空区下底板岩层变形破坏机理与巷道围岩控制技术. 山东煤炭科技. 2021(08): 46-48 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return