• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
Research on wellbore construction safety monitoring robot technology based on negative pressure adsorption[J]. Safety in Coal Mines, 2022, 53(8): 112-119.
Citation: Research on wellbore construction safety monitoring robot technology based on negative pressure adsorption[J]. Safety in Coal Mines, 2022, 53(8): 112-119.

Research on wellbore construction safety monitoring robot technology based on negative pressure adsorption

More Information
  • Published Date: August 19, 2022
  • This paper analyzes the main causes of accidents during wellbore construction and the existing problems of safety monitoring technology, puts forward safety monitoring robot technology for wellbore construction based on negative pressure adsorption, and analyzes the basic functions of safety monitoring robot in detail. The research goal of wellbore construction safety monitoring robot based on negative pressure adsorption is proposed from the robot body structure, walking mechanism, adsorption mechanism, control, communication, intelligent sensing, identification of dangerous sources, identification of explosive detonators, software platform development, etc. The technical device of wellbore construction safety supervision robot based on negative pressure adsorption is designed, the characteristics of the technology are defined.
  • [1]
    赵益芳.矿井防尘理论及技术[M].北京:煤炭工业出版社,1995.
    [2]
    史保勇.浅谈煤矿立井深部井筒施工技术[J].城市建设理论研究(电子版),2014(19):239-240.
    [3]
    付文俊.立井施工安全与监测监控技术[J].建井技术,2017,38(3):43-45.

    FU Wenjun. Mine shaft construction safety and monitoring and control technology[J]. Mine Construction Technology, 2017, 38(3): 43-45.
    [4]
    张茂宇,贾福音.煤矿井下粉尘监测、防治技术的现状与趋势[J].中国安全生产科学技术,2011,7(12):188-191.

    ZHANG Maoyu, JIA Fuyin. Situation and trend on dust monitoring & control technologies in underground mine[J]. Journal of Safety Science and Technology, 2011, 7(12): 188-191.
    [5]
    王晓健,蔡海兵.煤矿新建井筒安全监测系统的设计与应用[J].工矿自动化,2010,36(2):14-16.

    WANG Xiaojian, CAI Haibing. Design of safety monitoring system for shaft construction of coal mine and its application[J]. Industry and Mine Automation, 2010, 36(2): 14-16.
    [6]
    肖世贵,章亚男,沈林勇,等.—种双体负压吸附爬壁机器人的研究[J].工业控制计算机,2018(6):85-87.

    XIAO Shigui, ZHANG Yanan, SHEN Linyong, et al. Research on a twin-body negative pressure wall-climbing robot[J]. Industrial Control Computer, 2018(6): 85-87.
    [7]
    祖莉,王华坤.轮式移动机器人曲线行走控制的实现[J].控制工程,2004,11(4):345-348.

    ZU Li, WANG Huakun. Realization of curvilinear motion control for wheeled mobile robot[J]. Control Engineering of China, 2004, 11(4): 345-348.
    [8]
    YEHYA M I, HUSSAIN S, WASIM A, et al. A Cost Effective and Light Weight Unipolar Electroadhesion Pad Technology for Adhesion Mechanism of Wall Clim-bing Robot[J]. International Journal of Roboties and Mechatronics, 2016(1): 1-10.
    [9]
    ZHU H, GUAN Y, WU W, et al. Autonomous pose detection and Alignment of suction modules of a biped wall-climbing robot[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(2): 653-662.
    [10]
    吴善强,李满天,孙立宁.爬壁机器人负压吸附方式概述[J].林业机械与木工设备,2007,35(2):10-11.

    WU Shanqiang, LI Mantian, SUN Lining. Review of wall climbing robot with negative pressure cups[J]. Forestry Machinery & Woodworking Equipment, 2007, 35(2): 10-11.
    [11]
    朱海东,高健.负压吸附式爬壁机器人的体重设计[J].折江水利水电学院学报,2018,30(3):80-82.

    ZHU Haidong, GAO Jian. Weight design of wall-climbing robot with negative pressure adhesion[J]. Journal of Zhejiang Water Conservancy and Hydropower College, 2018, 30(3): 80-82.
    [12]
    徐芸,刘宝生,赵锡芳.自动扫查爬壁机器人结构及控制系统研究[J].组合机床与自动化加工技术,2005(4):50-52.

    XU Yun, LIU Baosheng, ZHAO Xifang. The structure of automatic scan robot and control system[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2005(4): 50-52.
    [13]
    Y Kanayama, Y Kimura, F Miyazaki, et al. A stable tracking control method for an autonomous mobile robot[C]// IEEE International Conference on Robotics and Automation.IEEE, 1990. DOI:10.1109/ROBOT.1990. 126006
    [14]
    祖莉,王华坤,范元勋.户外小型智能移动机器人运动轨迹跟踪控制[J].南京理工大学学报,2003,27(1):56-59.

    ZU Li, WANG Huakun, FAN Yuanxun. Trajectory tracking control of small outdoor intelligent mobile robots[J]. Journal of Nanjing University of Science and Technology, 2003, 27(1): 56-59.
    [15]
    刘海洲.基于RS485总线的遥控机器人通讯系统设计与实现[J].自动化技术与应用,2011,30(1):28.

    LIU Haizhou. Design and practice of communication system for telecontrol robot based on RS-485[J]. Techniques of Automation and Applications, 2011, 30(1): 28-31.
    [16]
    张伟,鲁守银,谭琳.基于机器视觉的智能导览机器人控制系统设计[J].电子设计工程,2009,17(9):106-108.

    ZHANG Wei, LU Shouyin, TAN Lin. Design of intelligent tour guide robot control system based on machine vision[J]. Electronic Design Engineering, 2009, 17(9): 106-108.
    [17]
    张建军,葛运建,陈卫,等.基于现场总线的分布式智[J].机器人,2002,24(3):244-247.

    ZHANG Jianjun, GE Yunjian, CHEN Wei, et al. Research on distributed intelligent robot perceptual system based on field bus[J]. Robot, 2002, 24(3): 244.
    [18]
    彭佳栋,韦巍.机器人通用控制软件平台的设计与开发[J].工业控制计算机,2016,29(3):25-26.

    PENG Jiadong, WEI Wei. Programming and developing of universal control software platform[J]. Industrial Control Computer, 2016, 29(3): 25-26.
  • Related Articles

    [1]CHEN Xian, JIN Yeyong, CHEN Kang. A wireless program upgrade method for mine personnel portable equipment[J]. Safety in Coal Mines, 2021, 52(3): 170-174.
    [2]MENG Jijian, CHEN Yongran. Analysis of Influencing Factors of Wireless Charging Safety in Underground Coal Mine and Countermeasures[J]. Safety in Coal Mines, 2020, 51(12): 109-112.
    [3]LI Biao. Design of Belt System in Coal Mine Based on Wireless Transmission[J]. Safety in Coal Mines, 2020, 51(3): 130-132.
    [4]QIN Yi. Drill Inclinometer for Soft Coal Seam Based on Wireless Transmission Strategy[J]. Safety in Coal Mines, 2019, 50(6): 138-141.
    [5]WANG Hui, LIU Qiuping. Design of Nondestructive Measurement Circuit for Anchor Length of Mine[J]. Safety in Coal Mines, 2016, 47(9): 114-116.
    [6]CHEN Yueru, TAO Jinyi, ZHAO Hongyu, WANG Peng. Voice Compression Coding Scheme of Mine Wireless Through-the-earth Communication Based on CELP[J]. Safety in Coal Mines, 2015, 46(7): 142-145.
    [7]MA Long. Application of Wireless Ranging Technology in Personnel Positioning System of Coal Mine[J]. Safety in Coal Mines, 2015, 46(3): 71-73,76.
    [8]DING Enjie, ZHANG Lei, HU Yanjun, LIU Huan, LI Lun. Design of Mine Underground Wireless Network Video Monitoring Node[J]. Safety in Coal Mines, 2014, 45(12): 109-112.
    [9]WANG Wei. Design of Portable Wireless Methane Alarm Detector[J]. Safety in Coal Mines, 2014, 45(8): 117-118,121.
    [10]LIU De-jun. Design of Wireless Data Transmission Module in Mine Car Driving Assisting System[J]. Safety in Coal Mines, 2012, 43(6): 76-77,80.
  • Cited by

    Periodical cited type(13)

    1. 杨玉修. 艰险山区铁路建造期通信综合承载网研究. 中国铁路. 2024(06): 99-106 .
    2. 高永霞,孙运强,姚爱琴,赵文强,张婉婷,石喜玲. 基于LoRa的预制菜冷藏设备物联网终端设计. 国外电子测量技术. 2024(08): 64-70 .
    3. 黄炜旭,王青. 基于微控制器的无线爆破系统设计. 煤矿爆破. 2024(03): 35-38 .
    4. 赵鹏. 基于LoRa的矿区环境实时远程监测系统设计. 榆林学院学报. 2023(02): 64-67 .
    5. 吴培洁,龙光利. 基于Arduino和LoRa的新型冠状病毒感染监控系统的设计. 物联网技术. 2023(10): 126-128 .
    6. 陈贤,周澍. 一种低功耗综采工作面人员定位系统设计. 煤矿安全. 2023(11): 218-221 . 本站查看
    7. 黄德晟,李华杰,谢芳芳,郭勇军,郑新瑜. 基于LoRa技术的离子型稀土矿山监测系统设计. 工业控制计算机. 2023(11): 39-41 .
    8. 甘路. 基于Lora的工业机器人运动控制通信技术研究. 中国宽带. 2023(10): 16-18 .
    9. 李志涵,伯磊,王雪蓓,路原野,马一然. 基于物联网的校园疫情监控系统设计与实现. 物联网技术. 2022(02): 76-79 .
    10. 李萍丰,张金链,徐振洋,张兵兵,杨飞,李新. 基于LoRa物联的远程智能起爆系统研发. 金属矿山. 2022(07): 42-49 .
    11. 王清峰,王兴,肖玉清. 煤矿用自动钻机快速组网技术研究. 矿业安全与环保. 2022(05): 1-5+10 .
    12. 高万明,周飞,李峥. 基于运动状态的学生体测监测系统设计. 长春师范大学学报. 2021(08): 48-55 .
    13. 张洪光,刘亭亭,吕秀莎,张莹,聂剑红,李青. 三维露天矿山场景中异构分簇组网协议研究. 工矿自动化. 2021(12): 68-74 .

    Other cited types(6)

Catalog

    Article views (28) PDF downloads (7) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return