Citation: | LIU Dong. Experimental study on heat transfer characteristics of bituminous coal with different metamorphic degrees[J]. Safety in Coal Mines, 2022, 53(4): 45-50. |
[1] |
赵婧昱,宋佳佳,郭涛,等.基于煤火发展演化的松散煤体自燃温度纵深蔓延特征[J].煤炭学报,2021,46(6):1759-1767.
ZHAO Jingyu, SONG Jiajia, GUO Tao, et al. Temperature field migration characteristics of loose coal based on experimental scale[J]. Journal of China Coal Society, 2021, 46(6): 1759-1767.
|
[2] |
林柏泉,李庆钊,周延.煤矿采空区瓦斯与煤自燃复合热动力灾害多场演化研究进展[J].煤炭学报,2021, 46(6):1715-1726.
LIN Baiquan, LI Qingzhao, ZHOU Yan. Research advances about multi-field evolution of coupled thermodynamic disasters in coal mine goaf[J]. Journal of China Coal Society, 2021, 46(6): 1715-1726.
|
[3] |
Kong B, Li Z, Wang E, et al. An experimental study for characterization the process of coal oxidation and spontaneous combustion by electromagnetic radiation technique[J]. Process Safety and Environmental Protection, 2018, 119: 285-294.
|
[4] |
Song Z, Kuenzer C. Coal fires in China over the last decade: a comprehensive review[J]. International Journal of Coal Geology, 2014, 133: 72-99.
|
[5] |
刘竞龙,汪云甲,闫世勇,等.乌鲁木齐东侧煤火多源遥感融合探测[J].煤矿安全,2019,50(8):158-161.
LIU Jinglong, WANG Yunjia, YAN Shiyong, et al. Multi-source remote sensing fusion detection of coal fire in Eastern Urumchi[J]. Safety in Coal Mines, 2019, 50(8): 158-161.
|
[6] |
陈琛.煤自燃过程中温室气体排放的量化实验研究[D].北京:中国矿业大学(北京),2016.
|
[7] |
Wen H, Lu J, Xiao Y, et al. Temperature dependence of thermal conductivity, diffusion and specific heat capacity for coal and rocks from coalfield[J]. Thermochimica acta, 2015, 619: 41-47.
|
[8] |
马砺,魏高明,李珍宝,等.煤导热系数影响因素的实验研究[J].矿业安全与环保,2017,44(2):31-34.
MA Li, WEI Gaoming, LI Zhenbao, et al. Experimental study on influence factors of thermal conductivity of coal[J]. Mining Safety & Environmental Protection, 2017, 44(2): 31-34.
|
[9] |
肖旸,尹岚,马砺,等.不同预氧化温度下煤样热物性参数的实验研究[J].西安科技大学学报,2018,38(3):383-388.
XIAO Yang, YIN Lan, MA Li, et al. Experimental study on coal thermo-physical parameters under the different peroxidation temperature[J]. Journal of Xi’an University of Science and Technology, 2018, 38(3): 383-388.
|
[10] |
Xiao Y, Yin L, Deng J, et al. Thermophysical parameters of coal with various levels of preoxidation[J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(5): 2819-2829.
|
[11] |
Deng J, Li QW, Xiao Y, et al. Experimental study on the thermal properties of coal during pyrolysis, oxidation, and re-oxidation[J]. Applied Thermal Engineering, 2017, 110: 1137-1152.
|
[12] |
Deng J, Ren SJ, Xiao Y, et al. Thermal properties of coals with different metamorphic levels in air atmosphere[J]. Applied Thermal Engineering, 2018, 143: 542-549.
|
[13] |
张辛亥,周山林,拓龙龙,等.不同程度预氧化煤传热特性[J].西安科技大学学报,2019,39(5):761-766.
ZHANG Xinhai, ZHOU Shanlin, TUO Longlong, et al. Transfer characteristics of coal under different preoxidation degree[J]. Journal of Xi’an University of Science and Technology, 2019, 39(5): 761-766.
|
[14] |
周西华,徐丽娜,宋东平,等.大同矿区煤的导热系数灰色关联分析及预测[J].中国安全生产科学技术,2016,12(2):78-82.
ZHOU Xihua, XU Lina, SONG Dongping, et al. Grey relational analysis and prediction on thermal conductivity of coal in Datong mining area[J]. Journal of Safety Science and Technology, 2016, 12(2): 78-82.
|
[15] |
Yin L, Xiao Y, Zhong KQ, et al. Temperature effects on thermal diffusivity of bituminous coal using different pre-oxidation levels in a nitrogenous atmosphere[J]. Fuel, 2021, 288: 119640.
|
[16] |
Agarwal T. Influence of measurement parameters of laser flash analysis on the observed thermal diffusivity and the choice of parameters to get repeatable measurements[J]. Journal of Thermal Analysis and Calor-imetry, 2018, 134(2): 1183-1203.
|
[17] |
肖旸,尹岚,吕慧菲,等.咪唑类离子液体处理煤热失重以及传热特性[J].煤炭学报,2019,44(2):520.
XIAO Yang, YIN Lan, L?譈 Huifei, et al. Characteristic of weight loss and heat transfer for the imidazolium-based ionic liquids treatment coal[J]. Journal of China Coal Society, 2019, 44(:2): 520.
|
[18] |
Deng J, Li QW, Xiao Y, et al. Predictive models for thermal diffusivity and specific heat capacity of coals in Huainan mining area, China[J]. Thermochimica Acta, 2017, 656: 101-111.
|
[19] |
Xiao Y, Meng X, Yin L, et al. Influence of element composition and microcrystalline structure on thermal properties of bituminous coal under nitrogen atmosphere[J]. Process Safety and Environmental Protection, 2021, 147: 846-856.
|
[20] |
Ren SJ, Wang CP, Xiao Y, et al. Thermal properties of coal during low temperature oxidation using a grey correlation method[J]. Fuel, 2020, 260: 116287.
|
[21] |
Maloney DJ, Sampath R, Zondlo JW. Heat capacity and thermal conductivity considerations for coal particles during the early stages of rapid heating[J]. Combustion and Flame, 1999, 116(1/2): 94-104.
|
[22] |
鲁军辉.煤田火区煤岩体热物性参数及热破坏特性研究[D].西安:西安科技大学,2016.
|
[23] |
Turian RM, Sung DJ, Hsu FL. Thermal conductivity of granular coals, coal-water mixtures and multi-solid/liquid suspensions[J]. Fuel, 1991, 70(10): 1157.
|
[24] |
Ramazanova AE, Abdulagatov IM, Ranjith PG. Temperature effect on the thermal conductivity of black coal[J]. Journal of Chemical & Engineering Data, 2018, 63(5): 1534-1545.
|
1. |
衡献伟 ,付金磊 ,李青松 ,左金芳 . 突出煤层微震动态响应与多参量指标预警方法. 湖南科技大学学报(自然科学版). 2022(04): 1-8 .
![]() | |
2. |
李晋阳. 矿井生产中高位钻孔瓦斯抽放技术应用分析. 能源与节能. 2020(09): 184-185 .
![]() |