• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
Emergency rescue method based on disaster area environment of gas explosion in underground coal mines[J]. Safety in Coal Mines, 2022, 53(1): 237-242.
Citation: Emergency rescue method based on disaster area environment of gas explosion in underground coal mines[J]. Safety in Coal Mines, 2022, 53(1): 237-242.

Emergency rescue method based on disaster area environment of gas explosion in underground coal mines

More Information
  • Published Date: January 19, 2022
  • In order to resolve the key problems of emergency decision making, command and site disposal, and avoid the occurrence of mine rescue teams’ casualties, combining with the survey data from mine rescue teams, the formation mechanism of disaster area environment in underground coal mine gas explosion accidents was studied based on the explosion mechanics and the fluid mechanics. And the changing rule of disaster area environment and emergency rescue method were analyzed for gas explosions happened in the typical locations which were coal face, heading face and roadway. The results show that the disaster area environment has important relationship with explosion intensity, space size of explosion location, gas emission quantity, facilities and rescue measures. The formation of disaster environment can be divided into 3 stages which are the destruction of explosion shock wave and flame front, the redistribution of heat and harmful gas, and the disturbance of rescue measures. Furthermore, in line with the changing rule of disaster area environment, we propose an emergency rescue method that takes targeted measures to improve the disaster environment gradually for safety rescue on the basis of making a strict assessment of disaster area environment. And preventing the rescuers’ casualties should be focused on during the disturbance of the rescue measures.
  • [1]
    景国勋,贺祥,班涛,等.障碍物在分岔附近对瓦斯爆炸压力影响的实验研究[J].中国安全生产科学技术,2020,16(11):128-133.

    JING Guoxun, HE Xiang, BAN Tao, et al. Experimental study on influence of obstacles near bifurcation on gas explosion pressure[J]. Journal of Safety Science and Te-chnology, 2020, 16(11): 128-133.
    [2]
    郑国清.浅谈杉木树煤矿“7.23”瓦斯爆炸事故原因及防止对策[J].科技创业家,2014(7):107-108.
    [3]
    林柏泉,翟成.煤炭开采过程中诱发的瓦斯爆炸机理及预防措施[J].采矿与安全工程学报,2006,23(1):19-23.

    LIN Baiquan, ZHAI Cheng. Mechanism of gas explosion in coal exploitation and its preventive measures[J]. Journal of Mining & Safety Engineering, 2006, 23(1): 19.
    [4]
    胡双启,尉存娟,谭迎新.管道内瓦斯爆炸引起沉积煤粉尘二次爆炸的实验研究[J].应用基础与工程科学学报,2010,18(6):895.

    HU Shuangqi, YU Cunjuan, TAN Yingxin. Experimental research on secondary explosion of depositional coal dust detonated by gas explosion in pipeline[J]. Journal of Basic Science and Engineering, 2010, 18(6): 895.
    [5]
    张津嘉,许开立,王贝贝,等.瓦斯爆炸事故演化机理的综合论事故模型研究[J].中国安全科学学报,2015, 25(4):53-57.

    ZHANG Jinjia, XU Kaili, WANG Beibei, et al. Synthetic theory model for evolution mechanism of gas explosion accidents[J]. China Safety Science Journal, 2015, 25(4): 53-57.
    [6]
    朱传杰,林柏泉,江丙友,等.煤矿瓦斯爆炸冲击波多相破坏效应研究[J].中国矿业大学学报,2013,42(5):718-724.

    ZHU Chuanjie, LIN Baiquan, JIANG Bingyou, et al. Multiphase destructive effects of shock wave resulting from coal mine gas explosion[J]. Journal of China University of Mining & Technology, 2013, 42(5): 718-724.
    [7]
    郭德勇,刘金城,姜光杰.煤矿瓦斯爆炸事故应急救援响应机制[J].煤炭学报,2006,31(6):697-700.

    GUO Deyong, LIU Jincheng, JIANG Guangjie. The mechanism of the emergency rescue response during coal mine gas explosion[J]. Journal of China Coal Society, 2006, 31(6): 697-700.
    [8]
    焦宇,周心权,谭国庆.煤矿特别重大瓦斯爆炸事故应急救援及决策实施效果评价原则[J].煤矿安全,2009, 40(8):116-119.
    [9]
    国家安全生产监督管理总局矿山救援指挥中心,中国煤炭工业劳动保护科学技术学会矿山救护专业委员会.矿山事故应急救援战例及分析[M].北京:煤炭工业出版社,2006.
    [10]
    李雷雷.煤矿瓦斯爆炸灾区次生爆炸规律及应急决策模型研究[D].北京:中国矿业大学(北京),2019:31-37.
    [11]
    贾智伟,刘彦伟,景国勋.瓦斯爆炸冲击波在管道拐弯情况下的传播特性[J].煤炭学报,2011,36(1):97-100.

    JIA Zhiwei, LIU Yanwei, JING Guoxun. Propagation characteristic about shock wave of gas explosion at laneway corner[J]. Journal of China Coal Society, 2011, 36(1): 97-100.
    [12]
    Zipf Jr R K, Gamezo V N, Mohamed K M, et al. Deflagration-to-detonation transition in natural gas air mixtures[J]. Combustion and Flame, 2014, 161(8): 2165-2176.
    [13]
    Fedorov A V, Fomin P A, Tropin D A. Simple kinetics and detonation wave structure in a methane air mixture[J]. Combustion, Explosion, and Shock Waves, 2014, 50(1): 87-96.
    [14]
    刘永立,陈海波.矿井瓦斯爆炸毒害气体传播规律[J].煤炭学报,2009,34(6):788-791.

    LIU Yongli, CHEN Haibo. Study on diffusion rules of toxic gas from coal mine explosion[J]. Journal of China Coal Society, 2009, 34(6): 788-791.
    [15]
    同煤集团矿山救护大队.焦家寨矿“11·5”瓦斯爆炸事故抢救报告[R].大同:同煤集团矿山救护大队,2006:1-12.
    [16]
    李润求,施式亮,罗文柯.煤矿瓦斯爆炸事故特征与耦合规律研究[J].中国安全科学学报,2010,20(2):69-74.

    LI Runqiu, SHI Shiliang, LUO Wenke. Research on cross-coupling characteristics and laws of gas explosion accidents in coal mines[J]. China Safety Science Journal, 2010, 20(2): 69-74.
    [17]
    牛会永,邓军,周心权,等.煤矿火区封闭过程中瓦斯积聚规律研究及危险性分析[J].中南大学学报(自然科学版),2013,44(9):3918-3924.

    NIU Huiyong, DENG Jun, ZHOU Xinquan, et al. Law of gas accumulation and analysis of danger of gas explosion during sealing fire zone in coal mine[J]. Journal of Central South University(Science and Technology), 2013, 44(9): 3918-3924.
    [18]
    朱迎春,周心权,王海燕,等.封闭火区注惰气引发瓦斯爆炸的数值模拟[J].矿业安全与环保,2009,36(3):1-3.

    ZHU Yingchun, ZHOU Xinquan, WANG Haiyan, et al. Numerical simulation of gas explosion caused by nitrogen injection in sealed fire area[J]. Mining Safety & Environmental Protection, 2009, 36(3): 1-3.
    [19]
    国务院吉林省吉煤集团通化矿业集团公司八宝煤业公司“3·29”特别重大瓦斯爆炸事故调查组.吉林省吉煤集团通化矿业集团公司八宝煤业公司“3·29”特别重大瓦斯爆炸事故调查报告[EB/OL].(2013-07-11)[2021-02-28]. http://www.chinacoal-safety.gov.cn/zfxxgk/fdzdgknr/sgcc/sgbg/202004/t20200422_ 350724.shtml.
    [20]
    新疆大黄山豫新煤业有限责任公司一号井“7·5”重大瓦斯爆炸事故调查组.新疆大黄山豫新煤业有限责任公司一号井“7·5”重大瓦斯爆炸事故调查报告[EB/OL]. (2014-12-08)[2016-11-29]. http://www.btxxb.gov.cn/gk/zdgk/wjzc/529742.shtml.
    [21]
    周心权.基于瓦斯爆炸事故剖析突发事件应急处置的重要性[J].煤炭科学技术,2014,42(1):40-43.

    ZHOU Xinquan. Analysis of emergency management importance based on mine gas explosion accidents[J]. Coal Science and Technology, 2014, 42(1): 40-43.
  • Related Articles

    [1]ZHA Wenhua, FAN Hao, LIU Xinquan, XU Tao, LIU Xiao, CHENG Wenbo, CHEN Denghong. Numerical simulation study on optimization of supporting parameters of a new type of tension dispersed bolt[J]. Safety in Coal Mines, 2023, 54(9): 105-111. DOI: 10.13347/j.cnki.mkaq.2023.09.015
    [2]ZHAO Zhipeng, OUYANG Feng, HE Fulian, XU Xuhui, YANG Yang, XU Ruiyang. Study on key parameters of bidirectional shaped charge blasting for gob side entry retaining with roof cutting and pressure relief[J]. Safety in Coal Mines, 2022, 53(2): 226-233.
    [3]WU Liang. Parameterization Numerical Simulation of Dust Deposition in Dust Removal Pipeline[J]. Safety in Coal Mines, 2018, 49(8): 23-26.
    [4]CUI Jian, YANG Shuangsuo, ZHAO Fei, LI Shufeng, LI Ping. Strip-partial Mining Parameter Determination for Nearly Horizontal Seam Based on Key Stratum Theory[J]. Safety in Coal Mines, 2015, 46(3): 182-185.
    [5]GENG Yadong, LIU Defeng. Numerical Simulation of Forepoling Bolt Installing Angle[J]. Safety in Coal Mines, 2014, 45(1): 44-46,50.
    [6]HAI Lin-peng, JIANG Dong-jie. Numerical Simulation of Water Inrush in Excavation Roadway Near Faults[J]. Safety in Coal Mines, 2013, 44(9): 198-200.
    [7]ZHANG Lian-ying, MA Chao, LI Yan. Numerical Simulation of Bolting Support Mechanism[J]. Safety in Coal Mines, 2013, 44(9): 71-73.
    [8]JIANG Xiu-lei, MENG Jie, CHEN Yan-ke, LIU Xian-zheng. Numerical Simulation Study on the Scope of Hydraulic Fracturing Effect[J]. Safety in Coal Mines, 2013, 44(2): 3-6.
    [9]CHEN Xiao-kun, GUO Li-ping, CHENG Fang-ming, SHI Ji-lin. Numerical Simulation of Gas Explosion in Heading Face[J]. Safety in Coal Mines, 2012, 43(7): 20-22.
    [10]WANG Ge, JU Wei, SHI Xing-long, QIN Tao. Numerical Simulation of Overburden Activities Laws at Working Face[J]. Safety in Coal Mines, 2012, 43(4): 146-149.
  • Cited by

    Periodical cited type(7)

    1. 高文远,杨仁树,韩文成,贺建强,向平,杨阳,徐继业,杨正华,李灿,康一强,张耕豪. 非煤矿山连续机械化开采技术应用与发展. 有色金属(矿山部分). 2025(02): 23-41+72 .
    2. 李鹏. 智能化钻孔凿岩设备研发与应用. 机械管理开发. 2023(11): 253-254+258 .
    3. 张剑. 煤矿井下综合机械化采掘设备智能化改造. 设备管理与维修. 2022(10): 99-100 .
    4. 贺艳荣. 矿用全断面掘进机运行监测技术的研究与应用. 机械管理开发. 2022(05): 261-262+265 .
    5. 翟国栋,杨幸,徐辉东,刘宁,潘锐,岳中文. 煤矿用硬岩巷道智能化钻装锚掘进机设计. 煤矿机械. 2021(05): 1-3 .
    6. 王杜娟,贺飞,王勇,荆留杰,赵先发. 煤矿岩巷全断面掘进机(TBM)及智能化关键技术. 煤炭学报. 2020(06): 2031-2044 .
    7. 赵国良. 可可盖煤矿主副斜井TBM选型实践. 陕西煤炭. 2020(04): 45-48 .

    Other cited types(2)

Catalog

    Article views (50) PDF downloads (10) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return